应变率场联合调整及其在中国四川-云南地区浅源地震预测中的应用

IF 1.4 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Acta Geodaetica et Geophysica Pub Date : 2023-10-18 DOI:10.1007/s40328-023-00424-9
Shuang Zhu, Changyun Chen, Wei Zhan, Jingwei Li, Nannan Guo, Xuechuan Li, Guangli Su
{"title":"应变率场联合调整及其在中国四川-云南地区浅源地震预测中的应用","authors":"Shuang Zhu,&nbsp;Changyun Chen,&nbsp;Wei Zhan,&nbsp;Jingwei Li,&nbsp;Nannan Guo,&nbsp;Xuechuan Li,&nbsp;Guangli Su","doi":"10.1007/s40328-023-00424-9","DOIUrl":null,"url":null,"abstract":"<div><p>Calculation methods for large-scale strain rate fields from GNSS horizontal velocity can be divided into two types, namely mathematical and physical methods, which reflect different characteristics of the strain rate field. Therefore, it is necessary to combine these two types of methods to obtain a more reasonable strain rate field. In this study, strain rate fields made from the least-squares collocation (mathematical method) and fault model (physical method) were jointly processed by using Helmert variance component estimation, and the reliability of the joint results was analyzed based on the simulated and measured GNSS velocity. Then, the effect of station density on the strain rate field in the Sichuan-Yunnan region was analyzed, and the results show that the mathematical method was influenced by station density significantly. Based on the joint strain rate field in the Sichuan-Yunnan region, shallow seismicity forecast rates was calculated in conjunction with the Global Centroid-Moment-Tensor Earthquake Catalogue from 1976 to 2021. The results indicate that the shallow seismicity forecast rates of the Sichuan-Yunnan region is high, with 3 Mw ≥ 7.0 earthquakes may occur every 100 years.</p></div>","PeriodicalId":48965,"journal":{"name":"Acta Geodaetica et Geophysica","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint adjustment of strain rate fields and its application in shallow seismicity forecast in the Sichuan-Yunnan region, China\",\"authors\":\"Shuang Zhu,&nbsp;Changyun Chen,&nbsp;Wei Zhan,&nbsp;Jingwei Li,&nbsp;Nannan Guo,&nbsp;Xuechuan Li,&nbsp;Guangli Su\",\"doi\":\"10.1007/s40328-023-00424-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Calculation methods for large-scale strain rate fields from GNSS horizontal velocity can be divided into two types, namely mathematical and physical methods, which reflect different characteristics of the strain rate field. Therefore, it is necessary to combine these two types of methods to obtain a more reasonable strain rate field. In this study, strain rate fields made from the least-squares collocation (mathematical method) and fault model (physical method) were jointly processed by using Helmert variance component estimation, and the reliability of the joint results was analyzed based on the simulated and measured GNSS velocity. Then, the effect of station density on the strain rate field in the Sichuan-Yunnan region was analyzed, and the results show that the mathematical method was influenced by station density significantly. Based on the joint strain rate field in the Sichuan-Yunnan region, shallow seismicity forecast rates was calculated in conjunction with the Global Centroid-Moment-Tensor Earthquake Catalogue from 1976 to 2021. The results indicate that the shallow seismicity forecast rates of the Sichuan-Yunnan region is high, with 3 Mw ≥ 7.0 earthquakes may occur every 100 years.</p></div>\",\"PeriodicalId\":48965,\"journal\":{\"name\":\"Acta Geodaetica et Geophysica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodaetica et Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40328-023-00424-9\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodaetica et Geophysica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s40328-023-00424-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

根据全球导航卫星系统水平速度计算大尺度应变率场的方法可分为两类,即数学方法和物理方法,它们反映了应变率场的不同特征。因此,有必要将这两类方法结合起来,以获得更合理的应变率场。本研究采用 Helmert 方差分量估计法对最小二乘配准法(数学方法)和故障模型法(物理方法)得到的应变率场进行了联合处理,并根据模拟和测量的 GNSS 速度分析了联合处理结果的可靠性。然后,分析了台站密度对川滇地区应变率场的影响,结果表明数学方法受台站密度的影响较大。在川滇地区联合应变率场的基础上,结合《全球中心点-张量地震目录》计算了 1976~2021 年川滇地区浅源地震预测率。结果表明,川滇地区浅层地震预测率较高,每 100 年可能发生 3 次 Mw≥7.0 的地震。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint adjustment of strain rate fields and its application in shallow seismicity forecast in the Sichuan-Yunnan region, China

Calculation methods for large-scale strain rate fields from GNSS horizontal velocity can be divided into two types, namely mathematical and physical methods, which reflect different characteristics of the strain rate field. Therefore, it is necessary to combine these two types of methods to obtain a more reasonable strain rate field. In this study, strain rate fields made from the least-squares collocation (mathematical method) and fault model (physical method) were jointly processed by using Helmert variance component estimation, and the reliability of the joint results was analyzed based on the simulated and measured GNSS velocity. Then, the effect of station density on the strain rate field in the Sichuan-Yunnan region was analyzed, and the results show that the mathematical method was influenced by station density significantly. Based on the joint strain rate field in the Sichuan-Yunnan region, shallow seismicity forecast rates was calculated in conjunction with the Global Centroid-Moment-Tensor Earthquake Catalogue from 1976 to 2021. The results indicate that the shallow seismicity forecast rates of the Sichuan-Yunnan region is high, with 3 Mw ≥ 7.0 earthquakes may occur every 100 years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geodaetica et Geophysica
Acta Geodaetica et Geophysica GEOCHEMISTRY & GEOPHYSICS-
CiteScore
3.10
自引率
7.10%
发文量
26
期刊介绍: The journal publishes original research papers in the field of geodesy and geophysics under headings: aeronomy and space physics, electromagnetic studies, geodesy and gravimetry, geodynamics, geomathematics, rock physics, seismology, solid earth physics, history. Papers dealing with problems of the Carpathian region and its surroundings are preferred. Similarly, papers on topics traditionally covered by Hungarian geodesists and geophysicists (e.g. robust estimations, geoid, EM properties of the Earth’s crust, geomagnetic pulsations and seismological risk) are especially welcome.
期刊最新文献
Selection of a calibration system for relative gravimeters and testing of the processing using the example of the Zhetygen calibration baseline in Kazakhstan A forwarding spoofing detection algorithm for Beidou navigation satellite system vulnerability Machine learning assisted model based petrographic classification: a case study from Bokaro coal field Spatial and temporal analysis of daily terrestrial water storage anomalies in China Enhancing landslide inventory mapping through Multi-SAR image analysis: a comprehensive examination of current landslide zones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1