多尺度连续和离散空间异质性分析:结合特征向量空间滤波器和广义拉索刑罚的局部模型的开发

IF 3.3 3区 地球科学 Q1 GEOGRAPHY Geographical Analysis Pub Date : 2023-09-12 DOI:10.1111/gean.12375
Zhan Peng, Ryo Inoue
{"title":"多尺度连续和离散空间异质性分析:结合特征向量空间滤波器和广义拉索刑罚的局部模型的开发","authors":"Zhan Peng,&nbsp;Ryo Inoue","doi":"10.1111/gean.12375","DOIUrl":null,"url":null,"abstract":"<p>Two types of spatial heterogeneity can exist simultaneously: continuous variations across an entire space and significant changes that occur only in specific spatial units. Moreover, each of these can act across multiple spatial scales. To effectively detect both continuous and discrete spatial heterogeneity across different scales, this study proposes a novel approach that combines the random effects eigenvector spatially filtering-based spatially varying coefficient (RE-ESF-SVC) model and the generalized lasso (GL) technique. Additionally, a restricted maximum likelihood estimation (REML)-based two-step iterative algorithm is developed for parameter estimation. Simulation experiments and an empirical application using rental price data confirm the ability of the proposed model to identify multiscale continuous and discrete spatial heterogeneity.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"56 2","pages":"303-327"},"PeriodicalIF":3.3000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12375","citationCount":"0","resultStr":"{\"title\":\"Multiscale Continuous and Discrete Spatial Heterogeneity Analysis: The Development of a Local Model Combining Eigenvector Spatial Filters and Generalized Lasso Penalties\",\"authors\":\"Zhan Peng,&nbsp;Ryo Inoue\",\"doi\":\"10.1111/gean.12375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two types of spatial heterogeneity can exist simultaneously: continuous variations across an entire space and significant changes that occur only in specific spatial units. Moreover, each of these can act across multiple spatial scales. To effectively detect both continuous and discrete spatial heterogeneity across different scales, this study proposes a novel approach that combines the random effects eigenvector spatially filtering-based spatially varying coefficient (RE-ESF-SVC) model and the generalized lasso (GL) technique. Additionally, a restricted maximum likelihood estimation (REML)-based two-step iterative algorithm is developed for parameter estimation. Simulation experiments and an empirical application using rental price data confirm the ability of the proposed model to identify multiscale continuous and discrete spatial heterogeneity.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"56 2\",\"pages\":\"303-327\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12375\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12375\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12375","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

空间异质性可以同时存在两种类型:整个空间的连续变化和仅在特定空间单元发生的显著变化。此外,这两种变化都可以跨越多个空间尺度。为了有效检测不同尺度上的连续和离散空间异质性,本研究提出了一种结合随机效应特征向量空间滤波型空间变化系数(RE-ESF-SVC)模型和广义套索(GL)技术的新方法。此外,还开发了一种基于受限最大似然估计(REML)的两步迭代算法,用于参数估计。利用租金价格数据进行的模拟实验和经验应用证实了所提模型识别多尺度连续和离散空间异质性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale Continuous and Discrete Spatial Heterogeneity Analysis: The Development of a Local Model Combining Eigenvector Spatial Filters and Generalized Lasso Penalties

Two types of spatial heterogeneity can exist simultaneously: continuous variations across an entire space and significant changes that occur only in specific spatial units. Moreover, each of these can act across multiple spatial scales. To effectively detect both continuous and discrete spatial heterogeneity across different scales, this study proposes a novel approach that combines the random effects eigenvector spatially filtering-based spatially varying coefficient (RE-ESF-SVC) model and the generalized lasso (GL) technique. Additionally, a restricted maximum likelihood estimation (REML)-based two-step iterative algorithm is developed for parameter estimation. Simulation experiments and an empirical application using rental price data confirm the ability of the proposed model to identify multiscale continuous and discrete spatial heterogeneity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
5.60%
发文量
40
期刊介绍: First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.
期刊最新文献
Issue Information Impacts of improved transport on regional market access Testing Hypotheses When You Have More Than a Few* Beyond Auto‐Models: Self‐Correlated Sui‐Model Respecifications Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1