Yidan Guo, Xueying Xia, Zhaotai Wang, Yuhan Liu, Zhen Li
{"title":"基于建筑围护结构热惯性的屋顶辐射制冷系统需求响应策略研究","authors":"Yidan Guo, Xueying Xia, Zhaotai Wang, Yuhan Liu, Zhen Li","doi":"10.1177/01436244231208078","DOIUrl":null,"url":null,"abstract":"There is an imbalance between supply and demand in the power system. Implementing demand response control strategies for air-conditioning systems is beneficial to optimize the allocation of power resources. Here, we use two single strategies and a combination strategy for the radiant roof cooling system: passive energy storage, global temperature reset, and the passive energy storage-global temperature reset combination strategy to implement demand response control, all of which achieve peak load reduction or shifting by changing the indoor controlled parameters. Based on the thermal inertia of the building envelope, we utilize a TRNSYS model to analyze the performance of three demand response strategies of radiant roof cooling systems in terms of thermal comfort, energy consumption, operating costs, and peak load shifting rates. The findings reveal that implementing demand response strategies can reduce the operating energy consumption of radiant roof cooling systems and facilitate peak load shifting. Among them, the combined response strategy shows the best peak load transfer effect, with a transfer rate of 19.84% and a better operating economy. Meanwhile, we find that the outdoor temperature affects the implementation of demand response strategies for the radiant roof cooling system based on the thermal inertia of the building envelope. Practical application The study has significant application value in the following aspects: Implementing a demand response strategy for the radiant roof cooling system, based on the thermal inertia of the building envelope, can reduce operational energy consumption and achieve peak load shifting. This approach effectively addresses the issue of supply-demand imbalance in the power system. The application of the work could facilitate improved operational energy efficiency, contributing to emissions reduction goals and optimizing the use of intermittent renewable energy systems in power grids.","PeriodicalId":272488,"journal":{"name":"Building Services Engineering Research and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demand response strategy study of a radiant roof cooling system based on the thermal inertia of the building envelope\",\"authors\":\"Yidan Guo, Xueying Xia, Zhaotai Wang, Yuhan Liu, Zhen Li\",\"doi\":\"10.1177/01436244231208078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an imbalance between supply and demand in the power system. Implementing demand response control strategies for air-conditioning systems is beneficial to optimize the allocation of power resources. Here, we use two single strategies and a combination strategy for the radiant roof cooling system: passive energy storage, global temperature reset, and the passive energy storage-global temperature reset combination strategy to implement demand response control, all of which achieve peak load reduction or shifting by changing the indoor controlled parameters. Based on the thermal inertia of the building envelope, we utilize a TRNSYS model to analyze the performance of three demand response strategies of radiant roof cooling systems in terms of thermal comfort, energy consumption, operating costs, and peak load shifting rates. The findings reveal that implementing demand response strategies can reduce the operating energy consumption of radiant roof cooling systems and facilitate peak load shifting. Among them, the combined response strategy shows the best peak load transfer effect, with a transfer rate of 19.84% and a better operating economy. Meanwhile, we find that the outdoor temperature affects the implementation of demand response strategies for the radiant roof cooling system based on the thermal inertia of the building envelope. Practical application The study has significant application value in the following aspects: Implementing a demand response strategy for the radiant roof cooling system, based on the thermal inertia of the building envelope, can reduce operational energy consumption and achieve peak load shifting. This approach effectively addresses the issue of supply-demand imbalance in the power system. The application of the work could facilitate improved operational energy efficiency, contributing to emissions reduction goals and optimizing the use of intermittent renewable energy systems in power grids.\",\"PeriodicalId\":272488,\"journal\":{\"name\":\"Building Services Engineering Research and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Services Engineering Research and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/01436244231208078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/01436244231208078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demand response strategy study of a radiant roof cooling system based on the thermal inertia of the building envelope
There is an imbalance between supply and demand in the power system. Implementing demand response control strategies for air-conditioning systems is beneficial to optimize the allocation of power resources. Here, we use two single strategies and a combination strategy for the radiant roof cooling system: passive energy storage, global temperature reset, and the passive energy storage-global temperature reset combination strategy to implement demand response control, all of which achieve peak load reduction or shifting by changing the indoor controlled parameters. Based on the thermal inertia of the building envelope, we utilize a TRNSYS model to analyze the performance of three demand response strategies of radiant roof cooling systems in terms of thermal comfort, energy consumption, operating costs, and peak load shifting rates. The findings reveal that implementing demand response strategies can reduce the operating energy consumption of radiant roof cooling systems and facilitate peak load shifting. Among them, the combined response strategy shows the best peak load transfer effect, with a transfer rate of 19.84% and a better operating economy. Meanwhile, we find that the outdoor temperature affects the implementation of demand response strategies for the radiant roof cooling system based on the thermal inertia of the building envelope. Practical application The study has significant application value in the following aspects: Implementing a demand response strategy for the radiant roof cooling system, based on the thermal inertia of the building envelope, can reduce operational energy consumption and achieve peak load shifting. This approach effectively addresses the issue of supply-demand imbalance in the power system. The application of the work could facilitate improved operational energy efficiency, contributing to emissions reduction goals and optimizing the use of intermittent renewable energy systems in power grids.