利用部分重叠和空间平衡样本估算变化情况

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Environmetrics Pub Date : 2023-09-12 DOI:10.1002/env.2825
Xin Zhao, Anton Grafström
{"title":"利用部分重叠和空间平衡样本估算变化情况","authors":"Xin Zhao,&nbsp;Anton Grafström","doi":"10.1002/env.2825","DOIUrl":null,"url":null,"abstract":"<p>Spatially balanced samples are samples that are well-spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well-spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2825","citationCount":"0","resultStr":"{\"title\":\"Estimation of change with partially overlapping and spatially balanced samples\",\"authors\":\"Xin Zhao,&nbsp;Anton Grafström\",\"doi\":\"10.1002/env.2825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatially balanced samples are samples that are well-spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well-spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2825\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2825\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2825","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

空间均衡样本是指在某些可用辅助变量中分布均匀的样本。事实证明,选择这样的样本可以非常有效地估计与辅助变量相关的目标变量的当前状态(总量或平均值)。随着时间的推移,或者当新的辅助变量出现时,这些样本需要更新,以保持良好的分布,并对当前状态产生良好的估计。在这种更新中,我们希望在连续样本之间保持一些重叠,以改进对变化的估计。通过这种方法,我们最终会得到部分重叠且空间平衡的样本。为了估算变化估算值的方差,我们需要能够估算当前状态连续估算值之间的协方差。我们引入了一种基于局部均值的近似协方差估算器。通过模拟研究,我们发现与常用的估计器相比,所提出的估计器可以减少偏差。此外,当缩小局部邻域大小时,新估计器的偏差也会减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of change with partially overlapping and spatially balanced samples

Spatially balanced samples are samples that are well-spread in some available auxiliary variables. Selecting such samples has been proven to be very efficient in estimation of the current state (total or mean) of target variables related to the auxiliary variables. As time goes, or when new auxiliary variables become available, such samples need to be updated to stay well-spread and produce good estimates of the current state. In such an update, we want to keep some overlap between successive samples to improve the estimation of change. With this approach, we end up with partially overlapping and spatially balanced samples. To estimate the variance of an estimator of change, we need to be able to estimate the covariance between successive estimators of the current state. We introduce an approximate estimator of such covariance based on local means. By simulation studies, we show that the proposed estimator can reduce the bias compared to a commonly used estimator. Also, the new estimator tends to become less biased when reducing the local neighborhood size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
期刊最新文献
Issue Information Bias correction of daily precipitation from climate models, using the Q-GAM method Issue Information A hierarchical constrained density regression model for predicting cluster-level dose-response Under the mantra: ‘Make use of colorblind friendly graphs’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1