通风率和社会距离对疾病传播风险的影响:用欧拉-拉格朗日方法的数值研究

IF 2.8 4区 环境科学与生态学 Q2 ENGINEERING, CHEMICAL Aerosol Science and Technology Pub Date : 2023-10-18 DOI:10.1080/02786826.2023.2271954
Wonseok Oh, Ryozo Ooka, Hideki Kikumoto, Sihwan Lee
{"title":"通风率和社会距离对疾病传播风险的影响:用欧拉-拉格朗日方法的数值研究","authors":"Wonseok Oh, Ryozo Ooka, Hideki Kikumoto, Sihwan Lee","doi":"10.1080/02786826.2023.2271954","DOIUrl":null,"url":null,"abstract":"ABSTRACTThis study utilized the Eulerian-Lagrangian method to investigate the risk of transmission of disease by tracking particles generated through coughing. The effects of ventilation rates (0.5, 5.0, and 10 ACH) and social distancing (0.9 and 1.8 m) were examined in a small office room using a displacement ventilation system. Numerical simulations considered different particle sizes (1, 5, 10, 20, 40, and 80 μm) to understand particle behavior and transmission routes. The airflow resulting from human coughing was validated with experimental data. Results showed that at a social distance of 0.9 m, increasing the ventilation rate led to a higher fraction of particles directly inhaled by susceptible individuals, potentially causing droplet and airborne transmission. However, maintaining a social distance of 1.8 m and a ventilation rate of 10 ACH significantly reduced the fraction of inhaled particles. Larger particles tended to deposit on floors and surfaces, while smaller particles remained suspended in the air. Higher ventilation rates increased particle deposition on the body surface of susceptible individuals, whereas increasing social distance reduced particle deposition. These findings highlight the importance of appropriate ventilation rates and social distancing in reducing the risk of infection transmission. Maintaining a social distance of 1.8 m combined with increased ventilation effectively reduced the fraction of inhaled particles. Larger particles were more likely to deposit on surfaces, emphasizing the need for regular disinfection. Understanding the dynamics of infectious particles and implementing effective ventilation and distancing measures can help mitigate the spread of infectious diseases in indoor environments.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis research was supported by JSPS KAKEHI (Grant Number 21K18763).Supplementary informationThe supplementary information includes Appendix A, Appendix B, and Appendix C.Supplementary data for this article is available online at the provided DOI: https://doi.org/10.1080/02786826.2023.2271954.","PeriodicalId":7474,"journal":{"name":"Aerosol Science and Technology","volume":"23 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of ventilation rate and social distancing on risk of transmission of disease: A numerical study using Eulerian-Lagrangian method\",\"authors\":\"Wonseok Oh, Ryozo Ooka, Hideki Kikumoto, Sihwan Lee\",\"doi\":\"10.1080/02786826.2023.2271954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTThis study utilized the Eulerian-Lagrangian method to investigate the risk of transmission of disease by tracking particles generated through coughing. The effects of ventilation rates (0.5, 5.0, and 10 ACH) and social distancing (0.9 and 1.8 m) were examined in a small office room using a displacement ventilation system. Numerical simulations considered different particle sizes (1, 5, 10, 20, 40, and 80 μm) to understand particle behavior and transmission routes. The airflow resulting from human coughing was validated with experimental data. Results showed that at a social distance of 0.9 m, increasing the ventilation rate led to a higher fraction of particles directly inhaled by susceptible individuals, potentially causing droplet and airborne transmission. However, maintaining a social distance of 1.8 m and a ventilation rate of 10 ACH significantly reduced the fraction of inhaled particles. Larger particles tended to deposit on floors and surfaces, while smaller particles remained suspended in the air. Higher ventilation rates increased particle deposition on the body surface of susceptible individuals, whereas increasing social distance reduced particle deposition. These findings highlight the importance of appropriate ventilation rates and social distancing in reducing the risk of infection transmission. Maintaining a social distance of 1.8 m combined with increased ventilation effectively reduced the fraction of inhaled particles. Larger particles were more likely to deposit on surfaces, emphasizing the need for regular disinfection. Understanding the dynamics of infectious particles and implementing effective ventilation and distancing measures can help mitigate the spread of infectious diseases in indoor environments.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis research was supported by JSPS KAKEHI (Grant Number 21K18763).Supplementary informationThe supplementary information includes Appendix A, Appendix B, and Appendix C.Supplementary data for this article is available online at the provided DOI: https://doi.org/10.1080/02786826.2023.2271954.\",\"PeriodicalId\":7474,\"journal\":{\"name\":\"Aerosol Science and Technology\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02786826.2023.2271954\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02786826.2023.2271954","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究采用欧拉-拉格朗日方法,通过追踪咳嗽产生的颗粒来研究疾病传播的风险。采用置换通风系统,在一间小型办公室内研究了换气率(0.5、5.0和10 ACH)和社交距离(0.9和1.8 m)的影响。数值模拟考虑了不同粒径(1、5、10、20、40和80 μm)的颗粒,以了解颗粒的行为和传输路径。用实验数据验证了人体咳嗽产生的气流。结果表明,在社交距离为0.9 m时,通风量的增加会导致易感个体直接吸入颗粒物的比例增加,可能导致飞沫和空气传播。然而,保持1.8 m的社交距离和10 ACH的通气率显著降低了吸入颗粒的比例。较大的颗粒倾向于沉积在地板和表面,而较小的颗粒则悬浮在空气中。通气量越大,易感个体体表颗粒沉积增加,而社会距离越远,易感个体体表颗粒沉积减少。这些发现强调了适当的通气率和社会距离对降低感染传播风险的重要性。保持1.8米的社交距离并增加通风,有效地降低了吸入颗粒物的比例。较大的颗粒更有可能沉积在表面上,这强调了定期消毒的必要性。了解传染性颗粒的动力学,实施有效的通风和隔离措施,有助于减轻传染病在室内环境中的传播。免责声明作为对作者和研究人员的服务,我们提供了这个版本的已接受的手稿(AM)。在最终出版版本记录(VoR)之前,将对该手稿进行编辑、排版和审查。在制作和印前,可能会发现可能影响内容的错误,所有适用于期刊的法律免责声明也与这些版本有关。本研究得到了JSPS KAKEHI(授权号21K18763)的支持。补充信息补充信息包括附录A、附录B和附录c。本文的补充数据可在网站提供的DOI: https://doi.org/10.1080/02786826.2023.2271954上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of ventilation rate and social distancing on risk of transmission of disease: A numerical study using Eulerian-Lagrangian method
ABSTRACTThis study utilized the Eulerian-Lagrangian method to investigate the risk of transmission of disease by tracking particles generated through coughing. The effects of ventilation rates (0.5, 5.0, and 10 ACH) and social distancing (0.9 and 1.8 m) were examined in a small office room using a displacement ventilation system. Numerical simulations considered different particle sizes (1, 5, 10, 20, 40, and 80 μm) to understand particle behavior and transmission routes. The airflow resulting from human coughing was validated with experimental data. Results showed that at a social distance of 0.9 m, increasing the ventilation rate led to a higher fraction of particles directly inhaled by susceptible individuals, potentially causing droplet and airborne transmission. However, maintaining a social distance of 1.8 m and a ventilation rate of 10 ACH significantly reduced the fraction of inhaled particles. Larger particles tended to deposit on floors and surfaces, while smaller particles remained suspended in the air. Higher ventilation rates increased particle deposition on the body surface of susceptible individuals, whereas increasing social distance reduced particle deposition. These findings highlight the importance of appropriate ventilation rates and social distancing in reducing the risk of infection transmission. Maintaining a social distance of 1.8 m combined with increased ventilation effectively reduced the fraction of inhaled particles. Larger particles were more likely to deposit on surfaces, emphasizing the need for regular disinfection. Understanding the dynamics of infectious particles and implementing effective ventilation and distancing measures can help mitigate the spread of infectious diseases in indoor environments.DisclaimerAs a service to authors and researchers we are providing this version of an accepted manuscript (AM). Copyediting, typesetting, and review of the resulting proofs will be undertaken on this manuscript before final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to these versions also. AcknowledgementsThis research was supported by JSPS KAKEHI (Grant Number 21K18763).Supplementary informationThe supplementary information includes Appendix A, Appendix B, and Appendix C.Supplementary data for this article is available online at the provided DOI: https://doi.org/10.1080/02786826.2023.2271954.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerosol Science and Technology
Aerosol Science and Technology 环境科学-工程:化工
CiteScore
8.40
自引率
7.70%
发文量
73
审稿时长
3 months
期刊介绍: Aerosol Science and Technology publishes theoretical, numerical and experimental investigations papers that advance knowledge of aerosols and facilitate its application. Articles on either basic or applied work are suitable. Examples of topics include instrumentation for the measurement of aerosol physical, optical, chemical and biological properties; aerosol dynamics and transport phenomena; numerical modeling; charging; nucleation; nanoparticles and nanotechnology; lung deposition and health effects; filtration; and aerosol generation. Consistent with the criteria given above, papers that deal with the atmosphere, climate change, indoor and workplace environments, homeland security, pharmaceutical aerosols, combustion sources, aerosol synthesis reactors, and contamination control in semiconductor manufacturing will be considered. AST normally does not consider papers that describe routine measurements or models for aerosol air quality assessment.
期刊最新文献
Eulerian–Lagrangian CFD-microphysics modeling of aircraft-emitted aerosol formation at ground-level Advancing nasal formulation characterization: Considerations toward a robust and precise method to determine the mass fraction below 10 μm in nasal products A comparative assessment of black carbon emissions during heating 17 commercial cooking oils A convertible condensation particle counter using alcohol or water as the working fluid A numerical study on airflow and particle transport characteristics of subjects with cement dust exposure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1