原位界面钝化与自适应协同稳定全固态锂金属电池

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-09-28 DOI:10.1016/j.jechem.2023.09.020
Huanhui Chen , Xing Cao , Moujie Huang , Xiangzhong Ren , Yubin Zhao , Liang Yu , Ya Liu , Liubiao Zhong , Yejun Qiu
{"title":"原位界面钝化与自适应协同稳定全固态锂金属电池","authors":"Huanhui Chen ,&nbsp;Xing Cao ,&nbsp;Moujie Huang ,&nbsp;Xiangzhong Ren ,&nbsp;Yubin Zhao ,&nbsp;Liang Yu ,&nbsp;Ya Liu ,&nbsp;Liubiao Zhong ,&nbsp;Yejun Qiu","doi":"10.1016/j.jechem.2023.09.020","DOIUrl":null,"url":null,"abstract":"<div><p>The function of solid electrolytes and the composition of solid electrolyte interphase (SEI) are highly significant for inhibiting the growth of Li dendrites. Herein, we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li<sub>0.33</sub>La<sub>0.557</sub>TiO<sub>3</sub> (LLTO)-based solid-state batteries. Specifically, a functional SEI enriched with LiF/Li<sub>3</sub>PO<sub>4</sub> is formed by in-situ electrochemical conversion, which is greatly beneficial to improving interface compatibility and enhancing ion transport. While the polarized dielectric BaTiO<sub>3</sub>-polyamic acid (BTO-PAA, BP) film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition. As expected, the resulting electrolyte offers considerable ionic conductivity at room temperature (4.3 × 10<sup>−4</sup> S cm<sup>−1</sup>) and appreciable electrochemical decomposition voltage (5.23 V) after electrochemical passivation. For Li-LiFePO<sub>4</sub> batteries, it shows a high specific capacity of 153 mA h g<sup>−1</sup> at 0.2 C after 100 cycles and a long-term durability of 115 mA h g<sup>−1</sup> at 1.0 C after 800 cycles. Additionally, a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm<sup>−2</sup>. The stabilization mechanisms are elucidated by ex-situ XRD, ex-situ XPS, and ex-situ FTIR techniques, and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance. The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 282-292"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries\",\"authors\":\"Huanhui Chen ,&nbsp;Xing Cao ,&nbsp;Moujie Huang ,&nbsp;Xiangzhong Ren ,&nbsp;Yubin Zhao ,&nbsp;Liang Yu ,&nbsp;Ya Liu ,&nbsp;Liubiao Zhong ,&nbsp;Yejun Qiu\",\"doi\":\"10.1016/j.jechem.2023.09.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The function of solid electrolytes and the composition of solid electrolyte interphase (SEI) are highly significant for inhibiting the growth of Li dendrites. Herein, we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li<sub>0.33</sub>La<sub>0.557</sub>TiO<sub>3</sub> (LLTO)-based solid-state batteries. Specifically, a functional SEI enriched with LiF/Li<sub>3</sub>PO<sub>4</sub> is formed by in-situ electrochemical conversion, which is greatly beneficial to improving interface compatibility and enhancing ion transport. While the polarized dielectric BaTiO<sub>3</sub>-polyamic acid (BTO-PAA, BP) film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition. As expected, the resulting electrolyte offers considerable ionic conductivity at room temperature (4.3 × 10<sup>−4</sup> S cm<sup>−1</sup>) and appreciable electrochemical decomposition voltage (5.23 V) after electrochemical passivation. For Li-LiFePO<sub>4</sub> batteries, it shows a high specific capacity of 153 mA h g<sup>−1</sup> at 0.2 C after 100 cycles and a long-term durability of 115 mA h g<sup>−1</sup> at 1.0 C after 800 cycles. Additionally, a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm<sup>−2</sup>. The stabilization mechanisms are elucidated by ex-situ XRD, ex-situ XPS, and ex-situ FTIR techniques, and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance. The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"88 \",\"pages\":\"Pages 282-292\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005351\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005351","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

固体电解质的功能和固体电解质间相(SEI)的组成对抑制锂枝晶的生长具有重要意义。在此,我们报告了一种结合自适应策略的原位界面钝化方法来增强Li0.33La0.557TiO3 (LLTO)基固态电池。其中,原位电化学转化形成了富含LiF/Li3PO4的功能性SEI,极大地有利于改善界面相容性和增强离子输运。而电介质batio3 -聚酰胺酸(BTO-PAA, BP)极化膜则大大改善了锂离子迁移动力学,使锂离子沉积均匀化。正如预期的那样,所得到的电解质在室温下具有可观的离子电导率(4.3 × 10−4 S cm−1)和电化学钝化后可观的电化学分解电压(5.23 V)。对于Li-LiFePO4电池,在0.2℃下循环100次后,其比容量为153 mA h g−1,在1.0℃下循环800次后,其长期耐久性为115 mA h g−1。此外,在0.5 mA cm−2下,可以实现900小时以上的稳定的锂电镀/剥离。采用非原位XRD、非原位XPS和非原位FTIR技术对其稳定机理进行了分析,结果表明,结合极化效应的界面钝化是提高电化学性能的有效策略。本研究对固态锂电池电极-电解质界面的动态调节提供了更深入的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ interfacial passivation and self-adaptability synergistically stabilizing all-solid-state lithium metal batteries

The function of solid electrolytes and the composition of solid electrolyte interphase (SEI) are highly significant for inhibiting the growth of Li dendrites. Herein, we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li0.33La0.557TiO3 (LLTO)-based solid-state batteries. Specifically, a functional SEI enriched with LiF/Li3PO4 is formed by in-situ electrochemical conversion, which is greatly beneficial to improving interface compatibility and enhancing ion transport. While the polarized dielectric BaTiO3-polyamic acid (BTO-PAA, BP) film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition. As expected, the resulting electrolyte offers considerable ionic conductivity at room temperature (4.3 × 10−4 S cm−1) and appreciable electrochemical decomposition voltage (5.23 V) after electrochemical passivation. For Li-LiFePO4 batteries, it shows a high specific capacity of 153 mA h g−1 at 0.2 C after 100 cycles and a long-term durability of 115 mA h g−1 at 1.0 C after 800 cycles. Additionally, a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm−2. The stabilization mechanisms are elucidated by ex-situ XRD, ex-situ XPS, and ex-situ FTIR techniques, and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance. The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1