{"title":"硫化氢通过减少高血糖条件下成纤维细胞中的活性氧促进伤口愈合","authors":"Merve DENİZALTI","doi":"10.55262/fabadeczacilik.1354775","DOIUrl":null,"url":null,"abstract":"Abstract
 
 Chronic wounds are one of the common and serious diabetic complications that also impose a significant financial burden on society. A comprehensive treatment for chronic wounds has not yet been found and new treatment recommendations are needed. The beneficial effects of hydrogen sulfide (H2S) on wound healing have previously been demonstrated in healthy or diabetic animal models. H2S has also been found to accelerate wound closure in cells and animal models. H2S has been shown to be beneficial in diabetic wound healing, but their effect on wound healing under diabetic conditions has not yet been elucidated. In this study; we investigated the effects of H2S and reactive oxygen species (ROS) on wound healing in fibroblast under high glucose conditions. We used 2,3-bis-(2-methoxy- -nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and scratch migration assay to investigate fibroblast cell viability and wound healing migration. We showed that H2S enhanced wound healing in fibroblasts incubated with high glucose by increasing cell viability, proliferation, migration and attenuating ROS. According to our results, exogenous H2S reduced oxidative stress during wound repair. In conclusion, H2S accelerated wound healing, which may be related to the inhibition of oxidative stress.","PeriodicalId":36004,"journal":{"name":"Fabad Journal of Pharmaceutical Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hidrojen Sülfür hiperglisemik koşullar altında fibroblastlarda reaktif oksijen türevlerini azaltarak yara iyileşmesini destekler\",\"authors\":\"Merve DENİZALTI\",\"doi\":\"10.55262/fabadeczacilik.1354775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract
 
 Chronic wounds are one of the common and serious diabetic complications that also impose a significant financial burden on society. A comprehensive treatment for chronic wounds has not yet been found and new treatment recommendations are needed. The beneficial effects of hydrogen sulfide (H2S) on wound healing have previously been demonstrated in healthy or diabetic animal models. H2S has also been found to accelerate wound closure in cells and animal models. H2S has been shown to be beneficial in diabetic wound healing, but their effect on wound healing under diabetic conditions has not yet been elucidated. In this study; we investigated the effects of H2S and reactive oxygen species (ROS) on wound healing in fibroblast under high glucose conditions. We used 2,3-bis-(2-methoxy- -nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and scratch migration assay to investigate fibroblast cell viability and wound healing migration. We showed that H2S enhanced wound healing in fibroblasts incubated with high glucose by increasing cell viability, proliferation, migration and attenuating ROS. According to our results, exogenous H2S reduced oxidative stress during wound repair. In conclusion, H2S accelerated wound healing, which may be related to the inhibition of oxidative stress.\",\"PeriodicalId\":36004,\"journal\":{\"name\":\"Fabad Journal of Pharmaceutical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fabad Journal of Pharmaceutical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55262/fabadeczacilik.1354775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fabad Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55262/fabadeczacilik.1354775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Abstract
Chronic wounds are one of the common and serious diabetic complications that also impose a significant financial burden on society. A comprehensive treatment for chronic wounds has not yet been found and new treatment recommendations are needed. The beneficial effects of hydrogen sulfide (H2S) on wound healing have previously been demonstrated in healthy or diabetic animal models. H2S has also been found to accelerate wound closure in cells and animal models. H2S has been shown to be beneficial in diabetic wound healing, but their effect on wound healing under diabetic conditions has not yet been elucidated. In this study; we investigated the effects of H2S and reactive oxygen species (ROS) on wound healing in fibroblast under high glucose conditions. We used 2,3-bis-(2-methoxy- -nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and scratch migration assay to investigate fibroblast cell viability and wound healing migration. We showed that H2S enhanced wound healing in fibroblasts incubated with high glucose by increasing cell viability, proliferation, migration and attenuating ROS. According to our results, exogenous H2S reduced oxidative stress during wound repair. In conclusion, H2S accelerated wound healing, which may be related to the inhibition of oxidative stress.
期刊介绍:
The FABAD Journal of Pharmaceutical Sciences is published triannually by the Society of Pharmaceutical Sciences of Ankara (FABAD). All expressions of opinion and statements of supposed facts appearing in articles and/or advertisiments carried in this journal are published on the responsibility of the author and/or advertiser, anda re not to be regarded those of the Society of Pharmaceutical Sciences of Ankara. The manuscript submitted to the Journal has the requirement of not being published previously and has not been submitted elsewhere. Manuscripts should be prepared in accordance with the requirements specified as given in detail in the section of “Information for Authors”. The submission of the manuscript to the Journal is not a condition for acceptance; articles are accepted or rejected on merit alone. All rights reserved.