基于梯度的工程应用权衡设计

Q2 Engineering Designs Pub Date : 2023-06-24 DOI:10.3390/designs7040081
Lena A. Royster, Gene Hou
{"title":"基于梯度的工程应用权衡设计","authors":"Lena A. Royster, Gene Hou","doi":"10.3390/designs7040081","DOIUrl":null,"url":null,"abstract":"The goal of the trade-off design method presented in this study is to achieve newly targeted performance requirements by modifying the current values of the design variables. The trade-off design problem is formulated in the framework of Sequential Quadratic Programming. The method is computationally efficient as it is gradient-based, which, however, requires the performance functions to be differentiable. A new equation to calculate the scale factor to control the size of the design variables is introduced in this study, which can ensure the new design achieves the targeted performance objective. Three formal approaches are developed in this study for trade-off design to handle various design scenarios, which include one that can handle cases with linearly dependent constraints and with more constraints than the number of design variables. Three engineering design problems are presented as examples to validate and demonstrate the use of these trade-off approaches to find the best way to adjust the design variables to meet the revised performance requirements.","PeriodicalId":53150,"journal":{"name":"Designs","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient-Based Trade-Off Design for Engineering Applications\",\"authors\":\"Lena A. Royster, Gene Hou\",\"doi\":\"10.3390/designs7040081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of the trade-off design method presented in this study is to achieve newly targeted performance requirements by modifying the current values of the design variables. The trade-off design problem is formulated in the framework of Sequential Quadratic Programming. The method is computationally efficient as it is gradient-based, which, however, requires the performance functions to be differentiable. A new equation to calculate the scale factor to control the size of the design variables is introduced in this study, which can ensure the new design achieves the targeted performance objective. Three formal approaches are developed in this study for trade-off design to handle various design scenarios, which include one that can handle cases with linearly dependent constraints and with more constraints than the number of design variables. Three engineering design problems are presented as examples to validate and demonstrate the use of these trade-off approaches to find the best way to adjust the design variables to meet the revised performance requirements.\",\"PeriodicalId\":53150,\"journal\":{\"name\":\"Designs\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/designs7040081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs7040081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究中提出的权衡设计方法的目标是通过修改设计变量的当前值来达到新的目标性能要求。在顺序二次规划的框架下提出了权衡设计问题。该方法是基于梯度的,计算效率高,但要求性能函数是可微的。本文引入了一种新的计算比例因子的公式来控制设计变量的大小,从而保证新设计达到预定的性能目标。本研究为权衡设计开发了三种正式方法来处理各种设计场景,其中包括一种可以处理具有线性相关约束和约束多于设计变量数量的情况的方法。本文以三个工程设计问题为例,验证和演示了这些权衡方法的使用,以找到调整设计变量以满足修订后的性能要求的最佳方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gradient-Based Trade-Off Design for Engineering Applications
The goal of the trade-off design method presented in this study is to achieve newly targeted performance requirements by modifying the current values of the design variables. The trade-off design problem is formulated in the framework of Sequential Quadratic Programming. The method is computationally efficient as it is gradient-based, which, however, requires the performance functions to be differentiable. A new equation to calculate the scale factor to control the size of the design variables is introduced in this study, which can ensure the new design achieves the targeted performance objective. Three formal approaches are developed in this study for trade-off design to handle various design scenarios, which include one that can handle cases with linearly dependent constraints and with more constraints than the number of design variables. Three engineering design problems are presented as examples to validate and demonstrate the use of these trade-off approaches to find the best way to adjust the design variables to meet the revised performance requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Designs
Designs Engineering-Engineering (miscellaneous)
CiteScore
3.90
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Mechanical Transmissions with Convex–Concave Multipair Contact of Teeth in Precessional Gearing Design and Operational Assessment of a Railroad Track Robot for Railcar Undercarriage Condition Inspection Computational Investigation of the Fluidic Properties of Triply Periodic Minimal Surface (TPMS) Structures in Tissue Engineering Designs of Miniature Optomechanical Sensors for Measurements of Acceleration with Frequencies of Hundreds of Hertz Mapping the Potential of Zero-Energy Building in Greece Using Roof Photovoltaics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1