{"title":"用tanh-coth方法求解KdV方程广义尺度不变模拟的行波解","authors":"Oswaldo González-Gaxiola, Juan Ruiz de Chávez","doi":"10.1515/nleng-2022-0325","DOIUrl":null,"url":null,"abstract":"Abstract In this work, the generalized scale-invariant analog of the Korteweg–de Vries equation is studied. For the first time, the tanh–coth methodology is used to find traveling wave solutions for this nonlinear equation. The considered generalized equation is a connection between the well-known Korteweg–de Vries (KdV) equation and the recently investigated scale-invariant of the dependent variable (SIdV) equation. The obtained results show many families of solutions for the model, indicating that this equation also shares bell-shaped solutions with KdV and SIdV, as previously documented by other researchers. Finally, by executing the symbolic computation, we demonstrate that the used technique is a valuable and effective mathematical tool that can be used to solve problems that arise in the cross-disciplinary nonlinear sciences.","PeriodicalId":37863,"journal":{"name":"Nonlinear Engineering - Modeling and Application","volume":"128 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traveling wave solutions of the generalized scale-invariant analog of the KdV equation by tanh–coth method\",\"authors\":\"Oswaldo González-Gaxiola, Juan Ruiz de Chávez\",\"doi\":\"10.1515/nleng-2022-0325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work, the generalized scale-invariant analog of the Korteweg–de Vries equation is studied. For the first time, the tanh–coth methodology is used to find traveling wave solutions for this nonlinear equation. The considered generalized equation is a connection between the well-known Korteweg–de Vries (KdV) equation and the recently investigated scale-invariant of the dependent variable (SIdV) equation. The obtained results show many families of solutions for the model, indicating that this equation also shares bell-shaped solutions with KdV and SIdV, as previously documented by other researchers. Finally, by executing the symbolic computation, we demonstrate that the used technique is a valuable and effective mathematical tool that can be used to solve problems that arise in the cross-disciplinary nonlinear sciences.\",\"PeriodicalId\":37863,\"journal\":{\"name\":\"Nonlinear Engineering - Modeling and Application\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Engineering - Modeling and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/nleng-2022-0325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Engineering - Modeling and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nleng-2022-0325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Traveling wave solutions of the generalized scale-invariant analog of the KdV equation by tanh–coth method
Abstract In this work, the generalized scale-invariant analog of the Korteweg–de Vries equation is studied. For the first time, the tanh–coth methodology is used to find traveling wave solutions for this nonlinear equation. The considered generalized equation is a connection between the well-known Korteweg–de Vries (KdV) equation and the recently investigated scale-invariant of the dependent variable (SIdV) equation. The obtained results show many families of solutions for the model, indicating that this equation also shares bell-shaped solutions with KdV and SIdV, as previously documented by other researchers. Finally, by executing the symbolic computation, we demonstrate that the used technique is a valuable and effective mathematical tool that can be used to solve problems that arise in the cross-disciplinary nonlinear sciences.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.