剪裁Ti等级2和TNTZ合金表面在两步机械化学改性*

IF 2.4 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Surface Engineering Pub Date : 2023-06-03 DOI:10.1080/02670844.2023.2248707
Agnieszka Kowalczyk, Donata Kuczyńska-Zemła, Agata Sotniczuk, Klaudia Anuszewska, Halina Garbacz
{"title":"剪裁Ti等级2和TNTZ合金表面在两步机械化学改性*","authors":"Agnieszka Kowalczyk, Donata Kuczyńska-Zemła, Agata Sotniczuk, Klaudia Anuszewska, Halina Garbacz","doi":"10.1080/02670844.2023.2248707","DOIUrl":null,"url":null,"abstract":"The aim of this work was to improve the surface properties of cp-Ti Grade 2 and β-Ti alloy TNTZ (Ti-29Nb-13Ta-4.6Zr) for biomedical applications. A hybrid surface treatment consisting of shot peening and chemical etching was conducted. Subsequently, the physicochemical properties and topography of the modified surfaces were analysed. Microhardness measurements of the shot-peened samples revealed a great increase in the surface hardness to the similar level as can be achieved for the ultrafine-grained and nanostructured materials. Roughness tests and microscopic observations showed significant topographical differences, depending on the material and modification process involved. Moreover, in this paper we demonstrate the influence of the substrate and treatments on the wettability. Obtained results confirmed that designed hybrid modification of Ti Grade 2 and TNTZ has significant potential for biomedical applications.","PeriodicalId":21995,"journal":{"name":"Surface Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring Ti Grade 2 and TNTZ alloy surfaces in a two-step mechanical–chemical modification*\",\"authors\":\"Agnieszka Kowalczyk, Donata Kuczyńska-Zemła, Agata Sotniczuk, Klaudia Anuszewska, Halina Garbacz\",\"doi\":\"10.1080/02670844.2023.2248707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to improve the surface properties of cp-Ti Grade 2 and β-Ti alloy TNTZ (Ti-29Nb-13Ta-4.6Zr) for biomedical applications. A hybrid surface treatment consisting of shot peening and chemical etching was conducted. Subsequently, the physicochemical properties and topography of the modified surfaces were analysed. Microhardness measurements of the shot-peened samples revealed a great increase in the surface hardness to the similar level as can be achieved for the ultrafine-grained and nanostructured materials. Roughness tests and microscopic observations showed significant topographical differences, depending on the material and modification process involved. Moreover, in this paper we demonstrate the influence of the substrate and treatments on the wettability. Obtained results confirmed that designed hybrid modification of Ti Grade 2 and TNTZ has significant potential for biomedical applications.\",\"PeriodicalId\":21995,\"journal\":{\"name\":\"Surface Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02670844.2023.2248707\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02670844.2023.2248707","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

本工作的目的是改善cp-Ti 2级和β-钛合金TNTZ (Ti-29Nb-13Ta-4.6Zr)的表面性能,用于生物医学应用。采用喷丸强化和化学腐蚀相结合的复合表面处理方法。随后,对改性后表面的物理化学性质和形貌进行了分析。显微硬度测量表明,喷丸试样的表面硬度大大提高,达到与超细晶和纳米结构材料相似的水平。粗糙度测试和显微观察显示了显著的地形差异,这取决于所涉及的材料和改性过程。此外,本文还论证了基质和处理对润湿性的影响。研究结果证实了所设计的Ti 2级与TNTZ的杂交改性具有显著的生物医学应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring Ti Grade 2 and TNTZ alloy surfaces in a two-step mechanical–chemical modification*
The aim of this work was to improve the surface properties of cp-Ti Grade 2 and β-Ti alloy TNTZ (Ti-29Nb-13Ta-4.6Zr) for biomedical applications. A hybrid surface treatment consisting of shot peening and chemical etching was conducted. Subsequently, the physicochemical properties and topography of the modified surfaces were analysed. Microhardness measurements of the shot-peened samples revealed a great increase in the surface hardness to the similar level as can be achieved for the ultrafine-grained and nanostructured materials. Roughness tests and microscopic observations showed significant topographical differences, depending on the material and modification process involved. Moreover, in this paper we demonstrate the influence of the substrate and treatments on the wettability. Obtained results confirmed that designed hybrid modification of Ti Grade 2 and TNTZ has significant potential for biomedical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Engineering
Surface Engineering 工程技术-材料科学:膜
CiteScore
5.60
自引率
14.30%
发文量
51
审稿时长
2.3 months
期刊介绍: Surface Engineering provides a forum for the publication of refereed material on both the theory and practice of this important enabling technology, embracing science, technology and engineering. Coverage includes design, surface modification technologies and process control, and the characterisation and properties of the final system or component, including quality control and non-destructive examination.
期刊最新文献
Examination of the metallization behaviour of an ABS surface Performance of electrochemically deposited hydroxyapatite on textured 316L SS for applications in biomedicine Vanadium promoted ZnO films: effects on optical and photocatalytic properties Preparation and frictional characteristics of solid lubrication coating on CFRP surface Laser surface texturing of dies in strip drawing of DP600 steel sheet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1