利用碳质材料和金属氧化物催化氧化减少二氧化硫,促进环境可持续性

Tanoko Matthew Edward, Ying Weng, Sin Yuan Lai
{"title":"利用碳质材料和金属氧化物催化氧化减少二氧化硫,促进环境可持续性","authors":"Tanoko Matthew Edward, Ying Weng, Sin Yuan Lai","doi":"10.9767/bcrec.20031","DOIUrl":null,"url":null,"abstract":"The high concentration of sulfur dioxide (SO2) in the air that contributes to increasing health and environmental issues has caught the attention of all countries. Numerous tactics to regulate and lower the SO2 levels in the environment that have been applied through regulations and promising technology, progress has been obtained to decrease the SO2 concentration. Among methods for SO2 removal, one of the promising techniques used is the catalytic oxidation of SO2 to SO3, which not only reduces the SO2 concentration in the environment but also produces sulfuric acid (H2SO4). Thus, the performance of the catalysts that can promote the catalytic oxidation of SO2 to SO3 for environmental sustainability is reviewed in this study. The types of catalysts evaluated in this study are carbon-based materials and metal oxides. Worth noting that these catalysts are feasible to catalytically converting SO2 hazardous material to resources, viz. SO3 and H2SO4 for industrial use. The findings of this study can serve as a foundation for devising an innovative method for SO2 mitigation through catalytic oxidation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).","PeriodicalId":9329,"journal":{"name":"Bulletin of Chemical Reaction Engineering & Catalysis","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SO2 Mitigation via Catalytic Oxidation using Carbonaceous Materials and Metal Oxides for Environmental Sustainability\",\"authors\":\"Tanoko Matthew Edward, Ying Weng, Sin Yuan Lai\",\"doi\":\"10.9767/bcrec.20031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The high concentration of sulfur dioxide (SO2) in the air that contributes to increasing health and environmental issues has caught the attention of all countries. Numerous tactics to regulate and lower the SO2 levels in the environment that have been applied through regulations and promising technology, progress has been obtained to decrease the SO2 concentration. Among methods for SO2 removal, one of the promising techniques used is the catalytic oxidation of SO2 to SO3, which not only reduces the SO2 concentration in the environment but also produces sulfuric acid (H2SO4). Thus, the performance of the catalysts that can promote the catalytic oxidation of SO2 to SO3 for environmental sustainability is reviewed in this study. The types of catalysts evaluated in this study are carbon-based materials and metal oxides. Worth noting that these catalysts are feasible to catalytically converting SO2 hazardous material to resources, viz. SO3 and H2SO4 for industrial use. The findings of this study can serve as a foundation for devising an innovative method for SO2 mitigation through catalytic oxidation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).\",\"PeriodicalId\":9329,\"journal\":{\"name\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Chemical Reaction Engineering & Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9767/bcrec.20031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering & Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.20031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空气中高浓度的二氧化硫(SO2)造成越来越多的健康和环境问题,已引起所有国家的注意。通过法规和有前景的技术,许多调节和降低环境中SO2水平的策略已经被应用,在降低SO2浓度方面取得了进展。在脱除SO2的方法中,催化氧化SO2生成SO3是一种很有前途的技术,它不仅可以降低环境中SO2的浓度,还可以生成硫酸(H2SO4)。因此,本文综述了促进SO2催化氧化为SO3的催化剂的性能,以促进环境的可持续性。本研究评估的催化剂类型为碳基材料和金属氧化物。值得注意的是,这些催化剂可以将SO2有害物质催化转化为工业用的资源,即SO3和H2SO4。本研究结果可作为设计通过催化氧化减少SO2的创新方法的基础。版权所有©2023作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SO2 Mitigation via Catalytic Oxidation using Carbonaceous Materials and Metal Oxides for Environmental Sustainability
The high concentration of sulfur dioxide (SO2) in the air that contributes to increasing health and environmental issues has caught the attention of all countries. Numerous tactics to regulate and lower the SO2 levels in the environment that have been applied through regulations and promising technology, progress has been obtained to decrease the SO2 concentration. Among methods for SO2 removal, one of the promising techniques used is the catalytic oxidation of SO2 to SO3, which not only reduces the SO2 concentration in the environment but also produces sulfuric acid (H2SO4). Thus, the performance of the catalysts that can promote the catalytic oxidation of SO2 to SO3 for environmental sustainability is reviewed in this study. The types of catalysts evaluated in this study are carbon-based materials and metal oxides. Worth noting that these catalysts are feasible to catalytically converting SO2 hazardous material to resources, viz. SO3 and H2SO4 for industrial use. The findings of this study can serve as a foundation for devising an innovative method for SO2 mitigation through catalytic oxidation. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesis of W-Doped TiO2 Material Ratio Using One-Step Solvothermal Method and Treatment Orientation of Volatile Organic Compounds Preparation, Characterization, and Photocatalytic Activity of Ni-Cd/Al2O3 Composite Catalyst Kinetic Study of the Aluminum–water Reaction Using NaOH/NaAlO2 Catalyst for Hydrogen Production from Aluminum Cans Waste Synthesis of ZnO/NiO/g-C3N4 Nanocomposite Materials for Photocatalytic Degradation of Tetracycline Antibiotic Ag-TiO2 for Efficient Methylene Blue Photodegradation Under Visible Light Irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1