分段线性逼近驱动的原始支持向量机方法提高虹膜分类效率

Shital Solanki, Dr. Ramesh Prajapati
{"title":"分段线性逼近驱动的原始支持向量机方法提高虹膜分类效率","authors":"Shital Solanki, Dr. Ramesh Prajapati","doi":"10.32628/cseit12390542","DOIUrl":null,"url":null,"abstract":"Classification, a crucial aspect of machine learning, revolves around the meticulous analysis of data. However, the complexity of diverse life forms on Earth poses a challenge in distinguishing species that share similar attributes. The iris flower, with its subspecies exemplifies this challenge. The aim of the paper is to develop a methodology that not only enhances classification accuracy but also effectively addresses computational efficiency, facilitating faster and more practical categorization of iris patterns. This novel approach named Piecewise Linear Approximation based SVM (PLA-SVM) is applied to flower species classification and is benchmarked against alternative machine learning techniques. Implementation is carried out utilizing MATLAB – GUROBI interface of and GUROBI Solver. The performance metrics such as accuracy, precision, F1 score and ROC – AUC Curve are used to compare proposed algorithm performance. This comprehensive analysis enables a comparative study of diverse algorithms, ultimately validating the proposed PLA-SVM technique using the Iris dataset. The numerical implementation results shows that the PLASVM outperforms the existing standard classifiers in terms of different performance matrices.","PeriodicalId":313456,"journal":{"name":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","volume":"280 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piecewise Linear Approximation-Driven Primal SVM Approach for Improved Iris Classification Efficiency\",\"authors\":\"Shital Solanki, Dr. Ramesh Prajapati\",\"doi\":\"10.32628/cseit12390542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification, a crucial aspect of machine learning, revolves around the meticulous analysis of data. However, the complexity of diverse life forms on Earth poses a challenge in distinguishing species that share similar attributes. The iris flower, with its subspecies exemplifies this challenge. The aim of the paper is to develop a methodology that not only enhances classification accuracy but also effectively addresses computational efficiency, facilitating faster and more practical categorization of iris patterns. This novel approach named Piecewise Linear Approximation based SVM (PLA-SVM) is applied to flower species classification and is benchmarked against alternative machine learning techniques. Implementation is carried out utilizing MATLAB – GUROBI interface of and GUROBI Solver. The performance metrics such as accuracy, precision, F1 score and ROC – AUC Curve are used to compare proposed algorithm performance. This comprehensive analysis enables a comparative study of diverse algorithms, ultimately validating the proposed PLA-SVM technique using the Iris dataset. The numerical implementation results shows that the PLASVM outperforms the existing standard classifiers in terms of different performance matrices.\",\"PeriodicalId\":313456,\"journal\":{\"name\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"volume\":\"280 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Computer Science, Engineering and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32628/cseit12390542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Computer Science, Engineering and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/cseit12390542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分类是机器学习的一个关键方面,它围绕着对数据的细致分析。然而,地球上各种生命形式的复杂性给区分具有相似属性的物种带来了挑战。鸢尾花及其亚种就是这种挑战的例证。本文的目的是开发一种既能提高分类精度又能有效解决计算效率的方法,促进虹膜模式更快、更实用的分类。这种基于分段线性逼近的支持向量机(PLA-SVM)的新方法被应用于花卉分类,并与其他机器学习技术进行了基准测试。利用MATLAB - GUROBI接口和GUROBI求解器进行实现。使用准确度、精密度、F1分数和ROC - AUC曲线等性能指标来比较算法的性能。这项全面的分析能够对各种算法进行比较研究,最终验证使用Iris数据集提出的PLA-SVM技术。数值实现结果表明,该算法在不同的性能矩阵上都优于现有的标准分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Piecewise Linear Approximation-Driven Primal SVM Approach for Improved Iris Classification Efficiency
Classification, a crucial aspect of machine learning, revolves around the meticulous analysis of data. However, the complexity of diverse life forms on Earth poses a challenge in distinguishing species that share similar attributes. The iris flower, with its subspecies exemplifies this challenge. The aim of the paper is to develop a methodology that not only enhances classification accuracy but also effectively addresses computational efficiency, facilitating faster and more practical categorization of iris patterns. This novel approach named Piecewise Linear Approximation based SVM (PLA-SVM) is applied to flower species classification and is benchmarked against alternative machine learning techniques. Implementation is carried out utilizing MATLAB – GUROBI interface of and GUROBI Solver. The performance metrics such as accuracy, precision, F1 score and ROC – AUC Curve are used to compare proposed algorithm performance. This comprehensive analysis enables a comparative study of diverse algorithms, ultimately validating the proposed PLA-SVM technique using the Iris dataset. The numerical implementation results shows that the PLASVM outperforms the existing standard classifiers in terms of different performance matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Implementation of Hamming Code with Error Correction Using Xilinx Impact and Challenges of Data Mining : A Comprehensive Analysis Enhanced Pansharpening Using Curvelet Transform Optimized by Multi Population Based Differential Evolution Multimodal Data Integration for Early Alzheimer’s Detection Using Random Forest and Support Vector Machines The Future of Enterprise resource planning (ERP): Harnessing Artificial Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1