使用机器学习算法设计智能天线

Barsa Samantaray, Kunal Kumar Das, Jibendu Sekhar Roy
{"title":"使用机器学习算法设计智能天线","authors":"Barsa Samantaray, Kunal Kumar Das, Jibendu Sekhar Roy","doi":"10.26636/jtit.2023.4.1329","DOIUrl":null,"url":null,"abstract":"Smart antenna technologies improve spectral efficiency, security, energy efficiency, and overall service quality in cellular networks by utilizing signal processing algorithms that provide radiation beams to users while producing nulls for interferers. In this paper, the performance of such ML solutions as the support vector machine (SVM) algorithm, the artificial neural network (ANN), the ensemble algorithm (EA), and the decision tree (DT) algorithm used for forming the beam of smart antennas are compared. A smart antenna array made up of 10 half-wave dipoles is considered. The ANN method is better than the remaining approaches when it comes to achieving beam and null directions, whereas EA offers better performance in terms of reducing the side lobe level (SLL). The maximum SLL is achieved using EA for all the user directions. The performance of the ANN algorithm in terms of forming the beam of a smart antenna is also compared with that of the variable-step size adaptive algorithm.","PeriodicalId":38425,"journal":{"name":"Journal of Telecommunications and Information Technology","volume":"263 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing Smart Antennas Using Machine Learning Algorithms\",\"authors\":\"Barsa Samantaray, Kunal Kumar Das, Jibendu Sekhar Roy\",\"doi\":\"10.26636/jtit.2023.4.1329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart antenna technologies improve spectral efficiency, security, energy efficiency, and overall service quality in cellular networks by utilizing signal processing algorithms that provide radiation beams to users while producing nulls for interferers. In this paper, the performance of such ML solutions as the support vector machine (SVM) algorithm, the artificial neural network (ANN), the ensemble algorithm (EA), and the decision tree (DT) algorithm used for forming the beam of smart antennas are compared. A smart antenna array made up of 10 half-wave dipoles is considered. The ANN method is better than the remaining approaches when it comes to achieving beam and null directions, whereas EA offers better performance in terms of reducing the side lobe level (SLL). The maximum SLL is achieved using EA for all the user directions. The performance of the ANN algorithm in terms of forming the beam of a smart antenna is also compared with that of the variable-step size adaptive algorithm.\",\"PeriodicalId\":38425,\"journal\":{\"name\":\"Journal of Telecommunications and Information Technology\",\"volume\":\"263 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26636/jtit.2023.4.1329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26636/jtit.2023.4.1329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

智能天线技术通过利用信号处理算法向用户提供辐射波束,同时为干扰产生零点,提高了蜂窝网络的频谱效率、安全性、能源效率和整体服务质量。本文比较了用于形成智能天线波束的支持向量机(SVM)算法、人工神经网络(ANN)、集成算法(EA)和决策树(DT)算法等ML解决方案的性能。研究了一种由10个半波偶极子组成的智能天线阵列。当涉及到实现波束和零方向时,人工神经网络方法比其他方法更好,而EA在降低旁瓣电平(SLL)方面提供了更好的性能。在所有用户方向上使用EA可获得最大的最小使用距离。并将人工神经网络算法与变步长自适应算法在形成智能天线波束方面的性能进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing Smart Antennas Using Machine Learning Algorithms
Smart antenna technologies improve spectral efficiency, security, energy efficiency, and overall service quality in cellular networks by utilizing signal processing algorithms that provide radiation beams to users while producing nulls for interferers. In this paper, the performance of such ML solutions as the support vector machine (SVM) algorithm, the artificial neural network (ANN), the ensemble algorithm (EA), and the decision tree (DT) algorithm used for forming the beam of smart antennas are compared. A smart antenna array made up of 10 half-wave dipoles is considered. The ANN method is better than the remaining approaches when it comes to achieving beam and null directions, whereas EA offers better performance in terms of reducing the side lobe level (SLL). The maximum SLL is achieved using EA for all the user directions. The performance of the ANN algorithm in terms of forming the beam of a smart antenna is also compared with that of the variable-step size adaptive algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Telecommunications and Information Technology
Journal of Telecommunications and Information Technology Engineering-Electrical and Electronic Engineering
CiteScore
1.20
自引率
0.00%
发文量
34
期刊最新文献
High-isolation Quad-port MIMO Antenna for 5G Applications A Generalized Learning Approach to Deep Neural Networks Increasing Parallelism in Forward-backward Distributed Algorithm for Finding Strongly Connected Components of Directed Graphs Analyzing Performance of THz Band Graphene-Based MIMO Antenna for 6G Applications Multiprobe Planar Near-field Range Antenna Measurement System with Improved Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1