基于人工神经网络的油层体积因子预测——以尼日尔三角洲原油为例

Chiebuka Okoro, Angela Nwachukwu
{"title":"基于人工神经网络的油层体积因子预测——以尼日尔三角洲原油为例","authors":"Chiebuka Okoro, Angela Nwachukwu","doi":"10.25299/jeee.2022.7121","DOIUrl":null,"url":null,"abstract":"Artificial intelligence techniques provide an alternative to conventional empirical correlation methods when experimentally determined oil formation volume factors (OFVF) are lacking. A new mathematical model is proposed using an artificial neural network (ANN) for estimating the OFVF for the Niger Delta crude oils. The method consists of two stages: data decorrelation through principal component analysis (PCA) and OFVF estimation through ANN. Data decorrelation was used to reduce redundancy in the data which decreased the number of neurons in the hidden layer needed for an ANN to achieve high accuracy. In the development of the model, 316 data points were obtained from the Niger Delta region of Nigeria. Application of data cleaning, outliers’ elimination and PCA analysis reduced the data to 243 points. 213 data points were used to develop the model of which 75% was used for training, 15% for validation and 10% for testing. The remaining 30 data points were used to test the predictive capability of the proposed model. The results obtained were compared with widely accepted empirical correlations of Standing, Glaso, Vazquez, Ikiensikimama & Ajienka, and Al-Marhoun. The proposed new model performed better than all of them in terms of coefficient of correlation, AAPE and RMSE. Hence the ANN model will reduce cost, save time, and also predict the OFVF of Niger Delta crudes with higher precision.","PeriodicalId":33635,"journal":{"name":"Journal of Earth Energy Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oil Formation Volume Factor Prediction Using Artificial Neural Network: A Case Study of Niger Delta Crudes\",\"authors\":\"Chiebuka Okoro, Angela Nwachukwu\",\"doi\":\"10.25299/jeee.2022.7121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence techniques provide an alternative to conventional empirical correlation methods when experimentally determined oil formation volume factors (OFVF) are lacking. A new mathematical model is proposed using an artificial neural network (ANN) for estimating the OFVF for the Niger Delta crude oils. The method consists of two stages: data decorrelation through principal component analysis (PCA) and OFVF estimation through ANN. Data decorrelation was used to reduce redundancy in the data which decreased the number of neurons in the hidden layer needed for an ANN to achieve high accuracy. In the development of the model, 316 data points were obtained from the Niger Delta region of Nigeria. Application of data cleaning, outliers’ elimination and PCA analysis reduced the data to 243 points. 213 data points were used to develop the model of which 75% was used for training, 15% for validation and 10% for testing. The remaining 30 data points were used to test the predictive capability of the proposed model. The results obtained were compared with widely accepted empirical correlations of Standing, Glaso, Vazquez, Ikiensikimama & Ajienka, and Al-Marhoun. The proposed new model performed better than all of them in terms of coefficient of correlation, AAPE and RMSE. Hence the ANN model will reduce cost, save time, and also predict the OFVF of Niger Delta crudes with higher precision.\",\"PeriodicalId\":33635,\"journal\":{\"name\":\"Journal of Earth Energy Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Energy Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25299/jeee.2022.7121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Energy Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25299/jeee.2022.7121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当缺乏实验确定的地层体积因子(OFVF)时,人工智能技术可以替代传统的经验相关方法。提出了一种利用人工神经网络(ANN)估计尼日尔三角洲原油OFVF的数学模型。该方法包括两个阶段:通过主成分分析(PCA)进行数据去相关,通过神经网络进行OFVF估计。利用数据去相关来减少数据冗余,从而减少了人工神经网络达到较高准确率所需的隐藏层神经元数量。在模型的开发过程中,从尼日利亚的尼日尔三角洲地区获得了316个数据点。通过数据清洗、异常值剔除和PCA分析,将数据减少到243点。213个数据点用于开发模型,其中75%用于训练,15%用于验证,10%用于测试。剩余的30个数据点用于测试所提出模型的预测能力。所得结果与Standing, Glaso, Vazquez, Ikiensikimama &阿金卡和阿尔-马洪。新模型在相关系数、AAPE和RMSE方面均优于所有模型。因此,人工神经网络模型可以降低成本,节省时间,并能以更高的精度预测尼日尔三角洲原油的OFVF。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oil Formation Volume Factor Prediction Using Artificial Neural Network: A Case Study of Niger Delta Crudes
Artificial intelligence techniques provide an alternative to conventional empirical correlation methods when experimentally determined oil formation volume factors (OFVF) are lacking. A new mathematical model is proposed using an artificial neural network (ANN) for estimating the OFVF for the Niger Delta crude oils. The method consists of two stages: data decorrelation through principal component analysis (PCA) and OFVF estimation through ANN. Data decorrelation was used to reduce redundancy in the data which decreased the number of neurons in the hidden layer needed for an ANN to achieve high accuracy. In the development of the model, 316 data points were obtained from the Niger Delta region of Nigeria. Application of data cleaning, outliers’ elimination and PCA analysis reduced the data to 243 points. 213 data points were used to develop the model of which 75% was used for training, 15% for validation and 10% for testing. The remaining 30 data points were used to test the predictive capability of the proposed model. The results obtained were compared with widely accepted empirical correlations of Standing, Glaso, Vazquez, Ikiensikimama & Ajienka, and Al-Marhoun. The proposed new model performed better than all of them in terms of coefficient of correlation, AAPE and RMSE. Hence the ANN model will reduce cost, save time, and also predict the OFVF of Niger Delta crudes with higher precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
APPLICATION OF PSO-LSSVM IN PREDICTION AND ANALYSIS OF SLOW DRILLING (RATE OF PENETRATION) EVALUATION OF CONTINUOUS AND WATER ALTERNATING GAS (WAG) CO2 INJECTION ON X FIELD RECOVERY FACTOR The Effect of Different Gas Water Ratio on Recovery Factor and CO2 Storage Capacity in Water Alternating Gas Injection. A Case Study: “V” Field Development, North Sea Oil Formation Volume Factor Prediction Using Artificial Neural Network: A Case Study of Niger Delta Crudes Fracturing Fluid Optimization in Limestone Formation Using Guar Gum Crosslinked Fluid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1