非外周位置带阳离子取代基酞菁的声光化学和光化学比较研究

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Turkish Journal of Chemistry Pub Date : 2023-10-31 DOI:10.55730/1300-0527.3602
MUKADDES ÖZÇEŞMECİ, CEREN CAN KARANLIK, ALİ ERDOĞMUŞ, ESİN HAMURYUDAN
{"title":"非外周位置带阳离子取代基酞菁的声光化学和光化学比较研究","authors":"MUKADDES ÖZÇEŞMECİ, CEREN CAN KARANLIK, ALİ ERDOĞMUŞ, ESİN HAMURYUDAN","doi":"10.55730/1300-0527.3602","DOIUrl":null,"url":null,"abstract":"The term sonophotodynamic therapy (SPDT) refers to a combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), in which the efficacy of the treatment is boosted by utilizing the proper amount of a sensitizer that is responsive to both light and ultrasound. Although it has been proven in photophysicochemical studies that SPDT enhances singlet oxygen production, related studies in the literature are very limited. Considering this situation, this study aims to investigate the efficacy of synthesized phthalocyanines in terms of PDT and SPDT. The singlet oxygen quantum values calculated as 0.13 for 5, 0.44 for 6, and 0.61 for 7 in photochemical (PDT) application increased to 0.18, 0.86, and 0.92, respectively, with sonophotochemical (SPDT) application. According to the results, singlet oxygen production was more efficient with SPDT. This work will add to the body of knowledge on employing the SPDT approach to increase singlet oxygen generation","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions\",\"authors\":\"MUKADDES ÖZÇEŞMECİ, CEREN CAN KARANLIK, ALİ ERDOĞMUŞ, ESİN HAMURYUDAN\",\"doi\":\"10.55730/1300-0527.3602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The term sonophotodynamic therapy (SPDT) refers to a combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), in which the efficacy of the treatment is boosted by utilizing the proper amount of a sensitizer that is responsive to both light and ultrasound. Although it has been proven in photophysicochemical studies that SPDT enhances singlet oxygen production, related studies in the literature are very limited. Considering this situation, this study aims to investigate the efficacy of synthesized phthalocyanines in terms of PDT and SPDT. The singlet oxygen quantum values calculated as 0.13 for 5, 0.44 for 6, and 0.61 for 7 in photochemical (PDT) application increased to 0.18, 0.86, and 0.92, respectively, with sonophotochemical (SPDT) application. According to the results, singlet oxygen production was more efficient with SPDT. This work will add to the body of knowledge on employing the SPDT approach to increase singlet oxygen generation\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3602\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0527.3602","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

术语声光动力疗法(SPDT)是指声动力疗法(SDT)和光动力疗法(PDT)的结合,其中通过利用适量对光和超声均有反应的敏化剂来提高治疗效果。虽然在光物理化学研究中已经证明SPDT可以促进单线态氧的产生,但相关的文献研究非常有限。鉴于此,本研究旨在考察合成的酞菁在PDT和SPDT方面的功效。单线态氧量子值在光化学(PDT)应用中分别为0.13(5)、0.44(6)和0.61(7),在声光化学(SPDT)应用中分别增加到0.18、0.86和0.92。结果表明,SPDT的单线态产氧效率更高。这项工作将增加使用SPDT方法增加单线态氧生成的知识体系
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparatively sonophotochemical and photochemical studies of phthalocyanines with cationic substituents on nonperipheral positions
The term sonophotodynamic therapy (SPDT) refers to a combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), in which the efficacy of the treatment is boosted by utilizing the proper amount of a sensitizer that is responsive to both light and ultrasound. Although it has been proven in photophysicochemical studies that SPDT enhances singlet oxygen production, related studies in the literature are very limited. Considering this situation, this study aims to investigate the efficacy of synthesized phthalocyanines in terms of PDT and SPDT. The singlet oxygen quantum values calculated as 0.13 for 5, 0.44 for 6, and 0.61 for 7 in photochemical (PDT) application increased to 0.18, 0.86, and 0.92, respectively, with sonophotochemical (SPDT) application. According to the results, singlet oxygen production was more efficient with SPDT. This work will add to the body of knowledge on employing the SPDT approach to increase singlet oxygen generation
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
期刊最新文献
Corrigendum to "Polybrominated methoxy- and hydroxynaphthalenes" [Turkish Journal of Chemistry 40 (2) 2016 332-346 ]. Synthesis and characterization of new hexahydroquinoline derivatives and evaluation of their cytotoxicity, intracellular ROS production, and inhibitory effects on inflammatory mediators. Identification of blood at simulated crime scenes using silver nanoparticles with SERS. Magnetic solid-phase extraction technique based on Fe3O4@coPPy-PTH nanocomposite for extraction of cobalt, chromium, and nickel prior to determination by microsample injection system-flame atomic absorption spectrometry in alcoholic and nonalcoholic beverages. Synthesis of 3-methyl-3-buten-1-ol by supercritical CO2 in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1