苯并咪唑-2-酰基钌配合物通过醇脱氢形成C-N键

IF 1.3 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Turkish Journal of Chemistry Pub Date : 2023-10-31 DOI:10.55730/1300-0527.3606
ZAHID NAWAZ, NEVİN GÜRBÜZ, MUHAMMED NAVEED ZAFAR, NAMIK ÖZDEMİR, BEKİR ÇETİNKAYA, İSMAİL ÖZDEMİR
{"title":"苯并咪唑-2-酰基钌配合物通过醇脱氢形成C-N键","authors":"ZAHID NAWAZ, NEVİN GÜRBÜZ, MUHAMMED NAVEED ZAFAR, NAMIK ÖZDEMİR, BEKİR ÇETİNKAYA, İSMAİL ÖZDEMİR","doi":"10.55730/1300-0527.3606","DOIUrl":null,"url":null,"abstract":"A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type [(η6 -p-cymene)(BNHC)RuCl2 ] (1a-g) were synthesized via one-pot reaction of the NHC salt precursor, Ag2 O, and [RuCl2 (p-cymene)]2 and characterized using conventional spectroscopic techniques. The geometry of two precursors, [(η6 -p-cymene)(Me4BnMe2 BNHCCH2OxMe)RuCl2 ] (1f) and [(η6 -p-cymene)(Me5BnMe2 BNHCCH2OxMe)RuCl2 ] (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzimidazol-2-ylidene ruthenium complexes for C-N bond formation through alcohol dehydrogenation\",\"authors\":\"ZAHID NAWAZ, NEVİN GÜRBÜZ, MUHAMMED NAVEED ZAFAR, NAMIK ÖZDEMİR, BEKİR ÇETİNKAYA, İSMAİL ÖZDEMİR\",\"doi\":\"10.55730/1300-0527.3606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type [(η6 -p-cymene)(BNHC)RuCl2 ] (1a-g) were synthesized via one-pot reaction of the NHC salt precursor, Ag2 O, and [RuCl2 (p-cymene)]2 and characterized using conventional spectroscopic techniques. The geometry of two precursors, [(η6 -p-cymene)(Me4BnMe2 BNHCCH2OxMe)RuCl2 ] (1f) and [(η6 -p-cymene)(Me5BnMe2 BNHCCH2OxMe)RuCl2 ] (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.\",\"PeriodicalId\":23367,\"journal\":{\"name\":\"Turkish Journal of Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3606\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55730/1300-0527.3606","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

报道了用苯并咪唑基n -杂环碳(BNHC)钌配合物制备仲胺的低温借氢方法。以NHC盐前体ag2o和[RuCl2(对伞花烯)]2为原料,通过一锅反应合成了一系列[(η - 6 -对伞花烯)(BNHC)RuCl2] (1a-g)型钢琴-粪便配合物,并用常规光谱技术对其进行了表征。用单晶x射线衍射研究了[(η - 6 -p-cymene)(Me4BnMe2 BNHCCH2OxMe)RuCl2] (1f)和[(η - 6 -p-cymene)(Me5BnMe2 BNHCCH2OxMe)RuCl2] (1g)的几何结构。这些催化剂被发现在低至50℃的温度下有效地脱氢醇,使希夫碱缩合和随后的亚胺加氢产生仲胺。值得注意的是,这种基于钌的方法可以使芳香和杂芳香伯胺与各种伯醇进行n -烷基化,收率高达98%。目前的方法是绿色的,水作为唯一的副产品被释放出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Benzimidazol-2-ylidene ruthenium complexes for C-N bond formation through alcohol dehydrogenation
A low temperature hydrogen borrowing approach to generate secondary amines using benzimidazole-based N-heterocyclic carbene (BNHC) ruthenium complexes is reported. A series of the piano-stool complexes of the type [(η6 -p-cymene)(BNHC)RuCl2 ] (1a-g) were synthesized via one-pot reaction of the NHC salt precursor, Ag2 O, and [RuCl2 (p-cymene)]2 and characterized using conventional spectroscopic techniques. The geometry of two precursors, [(η6 -p-cymene)(Me4BnMe2 BNHCCH2OxMe)RuCl2 ] (1f) and [(η6 -p-cymene)(Me5BnMe2 BNHCCH2OxMe)RuCl2 ] (1g), was studied by single crystal X-ray diffraction. These catalysts were found to dehydrogenate alcohols efficiently at temperatures as low as 50 °C to allow Schiff-base condensation and subsequent imine hydrogenation to afford secondary amines. Notably, this ruthenium-based procedure enables the N-alkylation of aromatic and heteroaromatic primary amines with a wide range of primary alcohols in excellent yields of up to 98%. The present methodology is green and water is liberated as the sole byproduct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Journal of Chemistry
Turkish Journal of Chemistry 化学-工程:化工
CiteScore
2.40
自引率
7.10%
发文量
87
审稿时长
3 months
期刊介绍: The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK). The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings. The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities. The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields. All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.
期刊最新文献
Corrigendum to "Polybrominated methoxy- and hydroxynaphthalenes" [Turkish Journal of Chemistry 40 (2) 2016 332-346 ]. Synthesis and characterization of new hexahydroquinoline derivatives and evaluation of their cytotoxicity, intracellular ROS production, and inhibitory effects on inflammatory mediators. Identification of blood at simulated crime scenes using silver nanoparticles with SERS. Magnetic solid-phase extraction technique based on Fe3O4@coPPy-PTH nanocomposite for extraction of cobalt, chromium, and nickel prior to determination by microsample injection system-flame atomic absorption spectrometry in alcoholic and nonalcoholic beverages. Synthesis of 3-methyl-3-buten-1-ol by supercritical CO2 in coordination with HZSM-5-catalyzed formaldehyde-isobutene Prins reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1