{"title":"角边界切割区域的几何非线性平面弹性问题","authors":"Lyudmila Frishter","doi":"10.3390/axioms12111030","DOIUrl":null,"url":null,"abstract":"A relevant problem in the development and improvement of numeric analytical methods for the research of structures, buildings and construction is studying the stress–strain state of structures and construction with boundaries that have complex shapes. Deformations and stresses arise in a domain with a geometrically non-linear shape of the boundary (cut-outs and cuts). These stresses and deformations have great values and gradients. Experiments carried out using the photoelasticity method show a change in the deformation order ratios for different subareas of the boundary cut-out area depending on proximity to the apex of the angular cut-out. Areas with minor deformations are observed, and areas where linear deformations and shears are more significant than rotations are also observed. In addition, areas where section rotations are more significant than linear and shear deformations are observed. According to the experimental data, the mathematical model of the SSS in the area of the apex of the cut-out of the domain boundary should take into account non-linear deformations. Hence, it is necessary to formulate the boundary value problem of the theory of elasticity, taking into account the geometrical non-linearity. The research aim of this paper is to formulate the problem of the elasticity theory taking into account the geometrical non-linearity in furtherance of the proposed mathematical model justified by the experimental data obtained using the photoelasticity method. The obtained formulation of the elasticity theory problem allows analyzing the form of the system of equations of the boundary value problem depending on the proximity of the considered area to the irregular point of the boundary, i.e., taking into account the difference in the effect of linear and shear deformations, rotations and forced deformations on the solution to the geometrically non-linear elastic problem dealing with forced deformations in the area of an angular cut-out of the boundary of the plane domain.","PeriodicalId":53148,"journal":{"name":"Axioms","volume":"60 5","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrically Non-Linear Plane Elasticity Problem in the Area of an Angular Boundary Cut-Out\",\"authors\":\"Lyudmila Frishter\",\"doi\":\"10.3390/axioms12111030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A relevant problem in the development and improvement of numeric analytical methods for the research of structures, buildings and construction is studying the stress–strain state of structures and construction with boundaries that have complex shapes. Deformations and stresses arise in a domain with a geometrically non-linear shape of the boundary (cut-outs and cuts). These stresses and deformations have great values and gradients. Experiments carried out using the photoelasticity method show a change in the deformation order ratios for different subareas of the boundary cut-out area depending on proximity to the apex of the angular cut-out. Areas with minor deformations are observed, and areas where linear deformations and shears are more significant than rotations are also observed. In addition, areas where section rotations are more significant than linear and shear deformations are observed. According to the experimental data, the mathematical model of the SSS in the area of the apex of the cut-out of the domain boundary should take into account non-linear deformations. Hence, it is necessary to formulate the boundary value problem of the theory of elasticity, taking into account the geometrical non-linearity. The research aim of this paper is to formulate the problem of the elasticity theory taking into account the geometrical non-linearity in furtherance of the proposed mathematical model justified by the experimental data obtained using the photoelasticity method. The obtained formulation of the elasticity theory problem allows analyzing the form of the system of equations of the boundary value problem depending on the proximity of the considered area to the irregular point of the boundary, i.e., taking into account the difference in the effect of linear and shear deformations, rotations and forced deformations on the solution to the geometrically non-linear elastic problem dealing with forced deformations in the area of an angular cut-out of the boundary of the plane domain.\",\"PeriodicalId\":53148,\"journal\":{\"name\":\"Axioms\",\"volume\":\"60 5\",\"pages\":\"0\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms12111030\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms12111030","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Geometrically Non-Linear Plane Elasticity Problem in the Area of an Angular Boundary Cut-Out
A relevant problem in the development and improvement of numeric analytical methods for the research of structures, buildings and construction is studying the stress–strain state of structures and construction with boundaries that have complex shapes. Deformations and stresses arise in a domain with a geometrically non-linear shape of the boundary (cut-outs and cuts). These stresses and deformations have great values and gradients. Experiments carried out using the photoelasticity method show a change in the deformation order ratios for different subareas of the boundary cut-out area depending on proximity to the apex of the angular cut-out. Areas with minor deformations are observed, and areas where linear deformations and shears are more significant than rotations are also observed. In addition, areas where section rotations are more significant than linear and shear deformations are observed. According to the experimental data, the mathematical model of the SSS in the area of the apex of the cut-out of the domain boundary should take into account non-linear deformations. Hence, it is necessary to formulate the boundary value problem of the theory of elasticity, taking into account the geometrical non-linearity. The research aim of this paper is to formulate the problem of the elasticity theory taking into account the geometrical non-linearity in furtherance of the proposed mathematical model justified by the experimental data obtained using the photoelasticity method. The obtained formulation of the elasticity theory problem allows analyzing the form of the system of equations of the boundary value problem depending on the proximity of the considered area to the irregular point of the boundary, i.e., taking into account the difference in the effect of linear and shear deformations, rotations and forced deformations on the solution to the geometrically non-linear elastic problem dealing with forced deformations in the area of an angular cut-out of the boundary of the plane domain.
期刊介绍:
Axiomatic theories in physics and in mathematics (for example, axiomatic theory of thermodynamics, and also either the axiomatic classical set theory or the axiomatic fuzzy set theory) Axiomatization, axiomatic methods, theorems, mathematical proofs Algebraic structures, field theory, group theory, topology, vector spaces Mathematical analysis Mathematical physics Mathematical logic, and non-classical logics, such as fuzzy logic, modal logic, non-monotonic logic. etc. Classical and fuzzy set theories Number theory Systems theory Classical measures, fuzzy measures, representation theory, and probability theory Graph theory Information theory Entropy Symmetry Differential equations and dynamical systems Relativity and quantum theories Mathematical chemistry Automata theory Mathematical problems of artificial intelligence Complex networks from a mathematical viewpoint Reasoning under uncertainty Interdisciplinary applications of mathematical theory.