胡萝卜纳米纤维素与乙烯/醋酸乙烯共聚物基绿色复合材料的制备与表征

IF 1.3 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering and Technology Innovation Pub Date : 2023-11-02 DOI:10.46604/ijeti.2023.12375
None Yu-Cian Ke, None Ying-Chieh Chao, None Chun-Wei Chang, None Yeng-Fong Shih
{"title":"胡萝卜纳米纤维素与乙烯/醋酸乙烯共聚物基绿色复合材料的制备与表征","authors":"None Yu-Cian Ke, None Ying-Chieh Chao, None Chun-Wei Chang, None Yeng-Fong Shih","doi":"10.46604/ijeti.2023.12375","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the effect of nanocellulose on the properties and physical foaming of ethylene/vinyl acetate (EVA) copolymer. The nanocellulose is prepared from waste carrot residue using the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation method (CT) and is further modified through suspension polymerization of methyl methacrylate (MMA) monomer (CM). The obtained nanocellulose samples (CT or CM) are added to EVA to create a series of nanocomposites. Moreover, the EVA and CM/EVA composite were further foamed using supercritical carbon dioxide physical foaming. TEM results show that the average diameters of CT and CM are 24.35 ± 3.15 nm and 30.45 ± 1.86 nm, respectively. The analysis of mechanical properties demonstrated that the tensile strength of pure EVA increased from 10.02 MPa to 13.01 MPa with the addition of only 0.2 wt% of CM. Furthermore, the addition of CM to EVA enhanced the melt strength of the polymer, leading to improvements in the physical foaming properties of the material. The results demonstrate that the pore size of the CM/EVA foam material is smaller than that of pure EVA foam. Additionally, the cell density of the CM/EVA foam material can reach 3.23 × 1011 cells/cm3.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"16 3","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and Characterization of Carrot Nanocellulose and Ethylene/Vinyl Acetate Copolymer-Based Green Composites\",\"authors\":\"None Yu-Cian Ke, None Ying-Chieh Chao, None Chun-Wei Chang, None Yeng-Fong Shih\",\"doi\":\"10.46604/ijeti.2023.12375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate the effect of nanocellulose on the properties and physical foaming of ethylene/vinyl acetate (EVA) copolymer. The nanocellulose is prepared from waste carrot residue using the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation method (CT) and is further modified through suspension polymerization of methyl methacrylate (MMA) monomer (CM). The obtained nanocellulose samples (CT or CM) are added to EVA to create a series of nanocomposites. Moreover, the EVA and CM/EVA composite were further foamed using supercritical carbon dioxide physical foaming. TEM results show that the average diameters of CT and CM are 24.35 ± 3.15 nm and 30.45 ± 1.86 nm, respectively. The analysis of mechanical properties demonstrated that the tensile strength of pure EVA increased from 10.02 MPa to 13.01 MPa with the addition of only 0.2 wt% of CM. Furthermore, the addition of CM to EVA enhanced the melt strength of the polymer, leading to improvements in the physical foaming properties of the material. The results demonstrate that the pore size of the CM/EVA foam material is smaller than that of pure EVA foam. Additionally, the cell density of the CM/EVA foam material can reach 3.23 × 1011 cells/cm3.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"16 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.12375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.12375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究纳米纤维素对乙烯/醋酸乙烯共聚物(EVA)性能和物理发泡性能的影响。以废胡萝卜渣为原料,采用2,2,6,6-四甲基哌啶-1-氧(TEMPO)氧化法(CT)制备纳米纤维素,并通过甲基丙烯酸甲酯(MMA)单体(CM)的悬浮聚合进一步改性。将获得的纳米纤维素样品(CT或CM)添加到EVA中以创建一系列纳米复合材料。采用超临界二氧化碳物理发泡法对EVA和CM/EVA复合材料进行了进一步发泡。TEM结果表明,CT和CM的平均直径分别为24.35±3.15 nm和30.45±1.86 nm。力学性能分析表明,仅添加0.2 wt%的CM,纯EVA的抗拉强度从10.02 MPa提高到13.01 MPa。此外,在EVA中添加CM增强了聚合物的熔体强度,从而改善了材料的物理发泡性能。结果表明:CM/EVA泡沫材料的孔径比纯EVA泡沫材料的孔径小;此外,CM/EVA泡沫材料的孔密度可达3.23 × 1011孔/cm3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preparation and Characterization of Carrot Nanocellulose and Ethylene/Vinyl Acetate Copolymer-Based Green Composites
This study aims to investigate the effect of nanocellulose on the properties and physical foaming of ethylene/vinyl acetate (EVA) copolymer. The nanocellulose is prepared from waste carrot residue using the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) oxidation method (CT) and is further modified through suspension polymerization of methyl methacrylate (MMA) monomer (CM). The obtained nanocellulose samples (CT or CM) are added to EVA to create a series of nanocomposites. Moreover, the EVA and CM/EVA composite were further foamed using supercritical carbon dioxide physical foaming. TEM results show that the average diameters of CT and CM are 24.35 ± 3.15 nm and 30.45 ± 1.86 nm, respectively. The analysis of mechanical properties demonstrated that the tensile strength of pure EVA increased from 10.02 MPa to 13.01 MPa with the addition of only 0.2 wt% of CM. Furthermore, the addition of CM to EVA enhanced the melt strength of the polymer, leading to improvements in the physical foaming properties of the material. The results demonstrate that the pore size of the CM/EVA foam material is smaller than that of pure EVA foam. Additionally, the cell density of the CM/EVA foam material can reach 3.23 × 1011 cells/cm3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.
期刊最新文献
A Study on the Vehicle Routing Problem Considering Infeasible Routing Based on the Improved Genetic Algorithm Prediction of Distribution Network Line Loss Rate Based on Ensemble Learning Optimization of SM4 Encryption Algorithm for Power Metering Data Transmission Finite Element Analysis of a Novel Tensegrity-Based Vibratory Platform Simulation and Measurement Analysis of an Integrated Flow Battery Energy-Storage System with Hybrid Wind/Wave Power Generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1