基于小波分析和poincarcarcars图的小舌尾流异常敏感参数的数据驱动发现

IF 1.3 Q3 ACOUSTICS Acoustics (Basel, Switzerland) Pub Date : 2023-11-02 DOI:10.3390/acoustics5040060
Xiuhua Si, Junshi Wang, Haibo Dong, Jinxiang Xi
{"title":"基于小波分析和poincarcarcars图的小舌尾流异常敏感参数的数据驱动发现","authors":"Xiuhua Si, Junshi Wang, Haibo Dong, Jinxiang Xi","doi":"10.3390/acoustics5040060","DOIUrl":null,"url":null,"abstract":"This study presents a data-driven approach to identifying anomaly-sensitive parameters through a multiscale, multifaceted analysis of simulated respiratory flows. The anomalies under consideration include a pharyngeal model with three levels of constriction (M1, M2, M3) and a flapping uvula with two types of kinematics (K1, K2). Direct numerical simulations (DNS) were implemented to solve the wake flows induced by a flapping uvula; instantaneous vortex images, as well as pressures and velocities at seven probes, were recorded for twelve cycles. Principal component analysis (PCA), wavelet-based multifractal spectrum and scalogram, and Poincaré mapping were implemented to identify anomaly-sensitive parameters. The PCA results demonstrated a reasonable periodicity of instantaneous vortex images in the leading vector space and revealed distinct patterns between models with varying uvula kinematics (K1, K2). At higher PCA ranks, the periodicity gradually decays, eventually transitioning to a random pattern. The multifractal spectra and scalograms of pressures in the pharynx (P6, P7) show high sensitivity to uvula kinematics, with the pitching mode (K2) having a wider spectrum and a left-skewed peak than the heaving mode (K1). Conversely, the Poincaré maps of velocities and pressures in the pharynx (Vel6, Vel7, P6, P7) exhibit high sensitivity to pharyngeal constriction levels (M1–M3), but not to uvula kinematics. The parameter sensitivity to anomaly also differs with the probe site; thus, synergizing measurements from multiple probes with properly extracted anomaly-sensitive parameters holds the potential to localize the source of snoring and estimate the collapsibility of the pharynx.","PeriodicalId":72045,"journal":{"name":"Acoustics (Basel, Switzerland)","volume":"2 3","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps\",\"authors\":\"Xiuhua Si, Junshi Wang, Haibo Dong, Jinxiang Xi\",\"doi\":\"10.3390/acoustics5040060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a data-driven approach to identifying anomaly-sensitive parameters through a multiscale, multifaceted analysis of simulated respiratory flows. The anomalies under consideration include a pharyngeal model with three levels of constriction (M1, M2, M3) and a flapping uvula with two types of kinematics (K1, K2). Direct numerical simulations (DNS) were implemented to solve the wake flows induced by a flapping uvula; instantaneous vortex images, as well as pressures and velocities at seven probes, were recorded for twelve cycles. Principal component analysis (PCA), wavelet-based multifractal spectrum and scalogram, and Poincaré mapping were implemented to identify anomaly-sensitive parameters. The PCA results demonstrated a reasonable periodicity of instantaneous vortex images in the leading vector space and revealed distinct patterns between models with varying uvula kinematics (K1, K2). At higher PCA ranks, the periodicity gradually decays, eventually transitioning to a random pattern. The multifractal spectra and scalograms of pressures in the pharynx (P6, P7) show high sensitivity to uvula kinematics, with the pitching mode (K2) having a wider spectrum and a left-skewed peak than the heaving mode (K1). Conversely, the Poincaré maps of velocities and pressures in the pharynx (Vel6, Vel7, P6, P7) exhibit high sensitivity to pharyngeal constriction levels (M1–M3), but not to uvula kinematics. The parameter sensitivity to anomaly also differs with the probe site; thus, synergizing measurements from multiple probes with properly extracted anomaly-sensitive parameters holds the potential to localize the source of snoring and estimate the collapsibility of the pharynx.\",\"PeriodicalId\":72045,\"journal\":{\"name\":\"Acoustics (Basel, Switzerland)\",\"volume\":\"2 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/acoustics5040060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/acoustics5040060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种数据驱动的方法,通过多尺度、多方面的模拟呼吸流分析来识别异常敏感参数。考虑的异常包括具有三个收缩水平(M1, M2, M3)的咽模型和具有两种运动类型(K1, K2)的扑动小舌。采用直接数值模拟(DNS)方法求解了小舌扑动引起的尾流问题;在12个循环中,记录了7个探针的瞬时涡旋图像以及压力和速度。利用主成分分析(PCA)、基于小波变换的多重分形谱和尺度图、poincarcarcars映射等方法识别异常敏感参数。主成分分析结果表明,瞬时涡旋图像在领先向量空间中具有合理的周期性,并揭示了不同小舌运动学模型之间的不同模式(K1, K2)。在较高的主成分阶上,周期性逐渐衰减,最终转变为随机模式。咽部压力的多重分形谱和尺度图(P6, P7)对小舌运动具有较高的敏感性,俯仰模式(K2)比起伏模式(K1)具有更宽的谱和左偏峰。相反,poincar咽部速度和压力图(Vel6, Vel7, P6, P7)对咽部收缩水平(M1-M3)表现出高度敏感性,但对小舌运动不敏感。探测位置不同,参数对异常的敏感性也不同;因此,从多个探头与适当提取的异常敏感参数协同测量有可能定位打鼾的来源和估计咽部的塌陷性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps
This study presents a data-driven approach to identifying anomaly-sensitive parameters through a multiscale, multifaceted analysis of simulated respiratory flows. The anomalies under consideration include a pharyngeal model with three levels of constriction (M1, M2, M3) and a flapping uvula with two types of kinematics (K1, K2). Direct numerical simulations (DNS) were implemented to solve the wake flows induced by a flapping uvula; instantaneous vortex images, as well as pressures and velocities at seven probes, were recorded for twelve cycles. Principal component analysis (PCA), wavelet-based multifractal spectrum and scalogram, and Poincaré mapping were implemented to identify anomaly-sensitive parameters. The PCA results demonstrated a reasonable periodicity of instantaneous vortex images in the leading vector space and revealed distinct patterns between models with varying uvula kinematics (K1, K2). At higher PCA ranks, the periodicity gradually decays, eventually transitioning to a random pattern. The multifractal spectra and scalograms of pressures in the pharynx (P6, P7) show high sensitivity to uvula kinematics, with the pitching mode (K2) having a wider spectrum and a left-skewed peak than the heaving mode (K1). Conversely, the Poincaré maps of velocities and pressures in the pharynx (Vel6, Vel7, P6, P7) exhibit high sensitivity to pharyngeal constriction levels (M1–M3), but not to uvula kinematics. The parameter sensitivity to anomaly also differs with the probe site; thus, synergizing measurements from multiple probes with properly extracted anomaly-sensitive parameters holds the potential to localize the source of snoring and estimate the collapsibility of the pharynx.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Data-Driven Discovery of Anomaly-Sensitive Parameters from Uvula Wake Flows Using Wavelet Analyses and Poincaré Maps Importance of Noise Hygiene in Dairy Cattle Farming—A Review Finite Element–Boundary Element Acoustic Backscattering with Model Reduction of Surface Pressure Based on Coherent Clusters Applying New Algorithms for Numerical Integration on the Sphere in the Far Field of Sound Pressure Sound Environment during Dental Treatment in Relation to COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1