矩形多孔折流板空气-水换热器单相强化换热实验研究

IF 0.9 Q4 THERMODYNAMICS International Journal of Thermodynamics Pub Date : 2023-09-11 DOI:10.5541/ijot.1285385
Atıqur RAHMAN
{"title":"矩形多孔折流板空气-水换热器单相强化换热实验研究","authors":"Atıqur RAHMAN","doi":"10.5541/ijot.1285385","DOIUrl":null,"url":null,"abstract":"Experimental analysis was conducted to investigate the turbulent heat transfer behaviors within a tubular heat exchanger, incorporating a novel baffle plate design. The new design includes a perforated circular baffle plate with a rectangular flow deflector that can be adjusted to different inclination angles. The baffle plate is strategically positioned at the entrance of the heat exchanger, resulting in a swirling flow downstream. To assess the impact of the baffle plate design, three baffle plates were placed longitudinally along the flow, with varying pitch ratios (l/D). The effects of pitch ratio (ranging from 0.6 to 1.2), deflector inclination angle (ranging between 30⁰ to 50⁰), and Reynolds numbers (ranging between 16000 to 29000) were examined. The outcomes highlighted the substantial impact of pitch ratio and inclination angle on the thermal enhancement factor. In particular, compared to single segmental baffle plates working under similar operating conditions. The result indicates that an inclination angle of 30° and a pitch ratio of 1 exhibited an average 41.49% augmentation in thermal-fluidic performance compared with an exchanger with a segmental baffle plate.","PeriodicalId":14438,"journal":{"name":"International Journal of Thermodynamics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Investigations on Single-Phase Heat Transfer Enhancement in an Air-To-Water Heat Exchanger with Rectangular Perforated Flow Deflector Baffle Plate\",\"authors\":\"Atıqur RAHMAN\",\"doi\":\"10.5541/ijot.1285385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experimental analysis was conducted to investigate the turbulent heat transfer behaviors within a tubular heat exchanger, incorporating a novel baffle plate design. The new design includes a perforated circular baffle plate with a rectangular flow deflector that can be adjusted to different inclination angles. The baffle plate is strategically positioned at the entrance of the heat exchanger, resulting in a swirling flow downstream. To assess the impact of the baffle plate design, three baffle plates were placed longitudinally along the flow, with varying pitch ratios (l/D). The effects of pitch ratio (ranging from 0.6 to 1.2), deflector inclination angle (ranging between 30⁰ to 50⁰), and Reynolds numbers (ranging between 16000 to 29000) were examined. The outcomes highlighted the substantial impact of pitch ratio and inclination angle on the thermal enhancement factor. In particular, compared to single segmental baffle plates working under similar operating conditions. The result indicates that an inclination angle of 30° and a pitch ratio of 1 exhibited an average 41.49% augmentation in thermal-fluidic performance compared with an exchanger with a segmental baffle plate.\",\"PeriodicalId\":14438,\"journal\":{\"name\":\"International Journal of Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5541/ijot.1285385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5541/ijot.1285385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2

摘要

对采用新型折流板设计的管式换热器紊流换热特性进行了实验研究。新的设计包括一个穿孔的圆形挡板和一个矩形的气流偏转板,可以调整到不同的倾角。折流板策略性地定位在热交换器的入口,导致下游的旋流。为了评估挡板设计的影响,三个挡板沿流动纵向放置,具有不同的螺距比(l/D)。研究了俯距比(0.6至1.2)、偏转器倾角(30⁰至50⁰)和雷诺数(16000至29000之间)的影响。结果表明,俯仰比和倾角对热增强系数有重要影响。特别是与在相似工况下工作的单节段折流板相比。结果表明,当换热器倾角为30°、节距比为1时,换热器的热流性能比带节段折流板的换热器平均提高41.49%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Investigations on Single-Phase Heat Transfer Enhancement in an Air-To-Water Heat Exchanger with Rectangular Perforated Flow Deflector Baffle Plate
Experimental analysis was conducted to investigate the turbulent heat transfer behaviors within a tubular heat exchanger, incorporating a novel baffle plate design. The new design includes a perforated circular baffle plate with a rectangular flow deflector that can be adjusted to different inclination angles. The baffle plate is strategically positioned at the entrance of the heat exchanger, resulting in a swirling flow downstream. To assess the impact of the baffle plate design, three baffle plates were placed longitudinally along the flow, with varying pitch ratios (l/D). The effects of pitch ratio (ranging from 0.6 to 1.2), deflector inclination angle (ranging between 30⁰ to 50⁰), and Reynolds numbers (ranging between 16000 to 29000) were examined. The outcomes highlighted the substantial impact of pitch ratio and inclination angle on the thermal enhancement factor. In particular, compared to single segmental baffle plates working under similar operating conditions. The result indicates that an inclination angle of 30° and a pitch ratio of 1 exhibited an average 41.49% augmentation in thermal-fluidic performance compared with an exchanger with a segmental baffle plate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
35
期刊介绍: The purpose and scope of the International Journal of Thermodynamics is · to provide a forum for the publication of original theoretical and applied work in the field of thermodynamics as it relates to systems, states, processes, and both non-equilibrium and equilibrium phenomena at all temporal and spatial scales. · to provide a multidisciplinary and international platform for the dissemination to academia and industry of both scientific and engineering contributions, which touch upon a broad class of disciplines that are foundationally linked to thermodynamics and the methods and analyses derived there from. · to assess how both the first and particularly the second laws of thermodynamics touch upon these disciplines. · to highlight innovative & pioneer research in the field of thermodynamics in the following subjects (but not limited to the following, novel research in new areas are strongly suggested): o Entropy in thermodynamics and information theory. o Thermodynamics in process intensification. o Biothermodynamics (topics such as self-organization far from equilibrium etc.) o Thermodynamics of nonadditive systems. o Nonequilibrium thermal complex systems. o Sustainable design and thermodynamics. o Engineering thermodynamics. o Energy.
期刊最新文献
Thermodynamic Modeling of Solubility of Some Antibiotics in Supercritical Carbon Dioxide Using Simplified Equation of State Approach Performance Evaluation of R1224yd as Alternative to R123 and R245fa for Vapor Compression Heat Pump System Computational Fluid Dynamic Analysis of Solar Dryer Equipped with Different Phase Change Materials Development and Economical Analysis of Innovative Parabolic Trough Collector Integrated Solar Still Use the Thermodynamic State Equations to Analyze the Non-ideality of Gas Mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1