Lovely Son, None M. Rusli, None S.P. Putra, None E. Satria
{"title":"起落架尺寸变化对无人机静强度和动态响应的影响","authors":"Lovely Son, None M. Rusli, None S.P. Putra, None E. Satria","doi":"10.15282/ijame.20.3.2023.16.0830","DOIUrl":null,"url":null,"abstract":"This research discusses the static and dynamic analysis of the landing gear structure of an unmanned aerial vehicle (UAV). The dimensional study is conducted to investigate the effect of landing gear dimension variation on UAVs’ static strength and dynamic response. Static analysis was performed with Finite Element Method (FEM) software. The dynamic response of the UAV is analyzed using a single-degree-of-freedom vibration model. Based on the static analysis results, the landing gear stiffness and strength can be increased by increasing the width and decreasing the height, radius, and length of the landing gear structure. The energy dissipation in the dynamic analysis is described by hysteresis and viscous damping model. The dynamic response simulation results show that the increase in the stiffness of the landing gear leads to an increase in force transmission and acceleration of the UAV. Furthermore, the UAV response using the viscous damping model can accurately predict the system’s response with the hysteretic damping model for small damping conditions. However, the deviation was observed for large damping conditions.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"26 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)\",\"authors\":\"Lovely Son, None M. Rusli, None S.P. Putra, None E. Satria\",\"doi\":\"10.15282/ijame.20.3.2023.16.0830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research discusses the static and dynamic analysis of the landing gear structure of an unmanned aerial vehicle (UAV). The dimensional study is conducted to investigate the effect of landing gear dimension variation on UAVs’ static strength and dynamic response. Static analysis was performed with Finite Element Method (FEM) software. The dynamic response of the UAV is analyzed using a single-degree-of-freedom vibration model. Based on the static analysis results, the landing gear stiffness and strength can be increased by increasing the width and decreasing the height, radius, and length of the landing gear structure. The energy dissipation in the dynamic analysis is described by hysteresis and viscous damping model. The dynamic response simulation results show that the increase in the stiffness of the landing gear leads to an increase in force transmission and acceleration of the UAV. Furthermore, the UAV response using the viscous damping model can accurately predict the system’s response with the hysteretic damping model for small damping conditions. However, the deviation was observed for large damping conditions.\",\"PeriodicalId\":13935,\"journal\":{\"name\":\"International Journal of Automotive and Mechanical Engineering\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automotive and Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/ijame.20.3.2023.16.0830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.3.2023.16.0830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The Effect of Landing Gear Dimension Variation on the Static Strength and Dynamic Response of Unmanned Aerial Vehicle (UAV)
This research discusses the static and dynamic analysis of the landing gear structure of an unmanned aerial vehicle (UAV). The dimensional study is conducted to investigate the effect of landing gear dimension variation on UAVs’ static strength and dynamic response. Static analysis was performed with Finite Element Method (FEM) software. The dynamic response of the UAV is analyzed using a single-degree-of-freedom vibration model. Based on the static analysis results, the landing gear stiffness and strength can be increased by increasing the width and decreasing the height, radius, and length of the landing gear structure. The energy dissipation in the dynamic analysis is described by hysteresis and viscous damping model. The dynamic response simulation results show that the increase in the stiffness of the landing gear leads to an increase in force transmission and acceleration of the UAV. Furthermore, the UAV response using the viscous damping model can accurately predict the system’s response with the hysteretic damping model for small damping conditions. However, the deviation was observed for large damping conditions.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.