{"title":"优化化学传感器检测混合气体浓度的光谱特性","authors":"None Muthana Alboedam, None A. A. Al-Rubaiee","doi":"10.56801/mme987","DOIUrl":null,"url":null,"abstract":"Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.","PeriodicalId":18466,"journal":{"name":"Metallurgical and Materials Engineering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Spectral Properties of the Chemical Sensor to Detect Concentrations of Gas Mixtures\",\"authors\":\"None Muthana Alboedam, None A. A. Al-Rubaiee\",\"doi\":\"10.56801/mme987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.\",\"PeriodicalId\":18466,\"journal\":{\"name\":\"Metallurgical and Materials Engineering\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56801/mme987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56801/mme987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing the Spectral Properties of the Chemical Sensor to Detect Concentrations of Gas Mixtures
Monitoring aromatic hydrocarbons is environmentally important because these chemical pollutants are ubiquitous. While waiting for powerful sensors capable of detecting hydrocarbons at extremely low levels, the current study demonstrates how each of the pure gas mixtures can be quickly and accurately identified. A noise removal unit was created for the chemical sensor data and then processed on the basis of the proposed algorithms in order to achieve matching and calibration. This method can be extended to other important aromatic hydrocarbon pollutants.