具有近最优速率的固定维变换平面估计量的渐近正态性

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY Electronic Journal of Statistics Pub Date : 2023-01-01 DOI:10.1214/23-ejs2144
Debarghya Mukherjee, Moulinath Banerjee, Debasri Mukherjee, Ya’acov Ritov
{"title":"具有近最优速率的固定维变换平面估计量的渐近正态性","authors":"Debarghya Mukherjee, Moulinath Banerjee, Debasri Mukherjee, Ya’acov Ritov","doi":"10.1214/23-ejs2144","DOIUrl":null,"url":null,"abstract":"Linear thresholding models postulate that the conditional distribution of a response variable in terms of covariates differs on the two sides of a (typically unknown) hyperplane in the covariate space. A key goal in such models is to learn about this separating hyperplane. Exact likelihood or least squares methods to estimate the thresholding parameter involve an indicator function which make them difficult to optimize and are, therefore, often tackled by using a surrogate loss that uses a smooth approximation to the indicator. In this paper, we demonstrate that the resulting estimator is asymptotically normal with a near optimal rate of convergence: n−1 up to a log factor, in both classification and regression thresholding models. This is substantially faster than the currently established convergence rates of smoothed estimators for similar models in the statistics and econometrics literatures. We also present a real-data application of our approach to an environmental data set where CO2 emission is explained in terms of a separating hyperplane defined through per-capita GDP and urban agglomeration.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":"23 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic normality of a change plane estimator in fixed dimension with near-optimal rate\",\"authors\":\"Debarghya Mukherjee, Moulinath Banerjee, Debasri Mukherjee, Ya’acov Ritov\",\"doi\":\"10.1214/23-ejs2144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear thresholding models postulate that the conditional distribution of a response variable in terms of covariates differs on the two sides of a (typically unknown) hyperplane in the covariate space. A key goal in such models is to learn about this separating hyperplane. Exact likelihood or least squares methods to estimate the thresholding parameter involve an indicator function which make them difficult to optimize and are, therefore, often tackled by using a surrogate loss that uses a smooth approximation to the indicator. In this paper, we demonstrate that the resulting estimator is asymptotically normal with a near optimal rate of convergence: n−1 up to a log factor, in both classification and regression thresholding models. This is substantially faster than the currently established convergence rates of smoothed estimators for similar models in the statistics and econometrics literatures. We also present a real-data application of our approach to an environmental data set where CO2 emission is explained in terms of a separating hyperplane defined through per-capita GDP and urban agglomeration.\",\"PeriodicalId\":49272,\"journal\":{\"name\":\"Electronic Journal of Statistics\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/23-ejs2144\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/23-ejs2144","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

线性阈值模型假设响应变量的协变量条件分布在协变量空间的一个(通常是未知的)超平面的两侧是不同的。这种模型的一个关键目标是了解这种分离超平面。估计阈值参数的精确似然或最小二乘方法涉及一个指标函数,这使得它们难以优化,因此,通常通过使用对指标进行平滑近似的替代损失来解决。在本文中,我们证明了所得到的估计量在分类和回归阈值模型中都是渐近正态的,具有接近最优的收敛速度:n−1直到一个对数因子。这比目前统计和计量经济学文献中类似模型的光滑估计器的收敛速度要快得多。我们还展示了我们的方法在环境数据集上的实际数据应用,其中二氧化碳排放是根据通过人均GDP和城市群定义的分离超平面来解释的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotic normality of a change plane estimator in fixed dimension with near-optimal rate
Linear thresholding models postulate that the conditional distribution of a response variable in terms of covariates differs on the two sides of a (typically unknown) hyperplane in the covariate space. A key goal in such models is to learn about this separating hyperplane. Exact likelihood or least squares methods to estimate the thresholding parameter involve an indicator function which make them difficult to optimize and are, therefore, often tackled by using a surrogate loss that uses a smooth approximation to the indicator. In this paper, we demonstrate that the resulting estimator is asymptotically normal with a near optimal rate of convergence: n−1 up to a log factor, in both classification and regression thresholding models. This is substantially faster than the currently established convergence rates of smoothed estimators for similar models in the statistics and econometrics literatures. We also present a real-data application of our approach to an environmental data set where CO2 emission is explained in terms of a separating hyperplane defined through per-capita GDP and urban agglomeration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
期刊最新文献
Direct Bayesian linear regression for distribution-valued covariates. Statistical inference via conditional Bayesian posteriors in high-dimensional linear regression Subnetwork estimation for spatial autoregressive models in large-scale networks Tests for high-dimensional single-index models Variable selection for single-index varying-coefficients models with applications to synergistic G × E interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1