了解和评估地面反射器,提高双面光伏发电量

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS IEEE Journal of Photovoltaics Pub Date : 2023-10-04 DOI:10.1109/JPHOTOV.2023.3319592
Shweta S Pal;Frank H C van Loenhout;Jelle Westerhof;Rebecca Saive
{"title":"了解和评估地面反射器,提高双面光伏发电量","authors":"Shweta S Pal;Frank H C van Loenhout;Jelle Westerhof;Rebecca Saive","doi":"10.1109/JPHOTOV.2023.3319592","DOIUrl":null,"url":null,"abstract":"Bifacial modules combined with optimally positioned ground reflectors (albedo) can boost photovoltaic (PV) yield. Yet, a rigorous understanding and benchmarking of the reflector performance is missing, which leads to errors in power yield and economic estimates, thus hampering PV market penetration. Here, we address this impediment by establishing an experimentally validated reverse ray tracing (RRT) approach, combined with empirically derived parameters. First, we determine the spectro-angular reflection of a wide class of ground reflectors (diffuse, glossy, and specular). These parameters were fed into our RRT software, that simulated the PV yield, which was then experimentally validated with a model PV system. The validated framework enables determining an upper limit to PV yield enhancement and current mismatch within modules exposed to different kinds of reflectors. Our approach helps assessing already-existing natural and exotic reflectors, and inspire novel reflectors for enhanced PV yield and economic benefits.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"14 1","pages":"160-169"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10272316","citationCount":"0","resultStr":"{\"title\":\"Understanding and Benchmarking Ground Reflectors for Bifacial Photovoltaic Yield Enhancement\",\"authors\":\"Shweta S Pal;Frank H C van Loenhout;Jelle Westerhof;Rebecca Saive\",\"doi\":\"10.1109/JPHOTOV.2023.3319592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bifacial modules combined with optimally positioned ground reflectors (albedo) can boost photovoltaic (PV) yield. Yet, a rigorous understanding and benchmarking of the reflector performance is missing, which leads to errors in power yield and economic estimates, thus hampering PV market penetration. Here, we address this impediment by establishing an experimentally validated reverse ray tracing (RRT) approach, combined with empirically derived parameters. First, we determine the spectro-angular reflection of a wide class of ground reflectors (diffuse, glossy, and specular). These parameters were fed into our RRT software, that simulated the PV yield, which was then experimentally validated with a model PV system. The validated framework enables determining an upper limit to PV yield enhancement and current mismatch within modules exposed to different kinds of reflectors. Our approach helps assessing already-existing natural and exotic reflectors, and inspire novel reflectors for enhanced PV yield and economic benefits.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"14 1\",\"pages\":\"160-169\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10272316\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10272316/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10272316/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

双面组件与最佳位置的地面反射器(反照率)相结合,可提高光伏发电量。然而,由于缺乏对反射器性能的严格了解和基准测试,导致发电量和经济估算出现误差,从而阻碍了光伏市场的普及。在此,我们通过建立一种经过实验验证的反向光线追踪 (RRT) 方法,并结合根据经验得出的参数,来解决这一障碍。首先,我们确定了多种地面反射器(漫反射、光面反射和镜面反射)的光谱角反射。这些参数被输入到我们的 RRT 软件中,该软件模拟了光伏发电量,然后用一个模型光伏系统进行了实验验证。经过验证的框架能够确定光伏发电量提高的上限,以及暴露在不同类型反射镜下的组件内的电流失配。我们的方法有助于评估现有的天然和外来反射器,并启发新型反射器以提高光伏发电量和经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding and Benchmarking Ground Reflectors for Bifacial Photovoltaic Yield Enhancement
Bifacial modules combined with optimally positioned ground reflectors (albedo) can boost photovoltaic (PV) yield. Yet, a rigorous understanding and benchmarking of the reflector performance is missing, which leads to errors in power yield and economic estimates, thus hampering PV market penetration. Here, we address this impediment by establishing an experimentally validated reverse ray tracing (RRT) approach, combined with empirically derived parameters. First, we determine the spectro-angular reflection of a wide class of ground reflectors (diffuse, glossy, and specular). These parameters were fed into our RRT software, that simulated the PV yield, which was then experimentally validated with a model PV system. The validated framework enables determining an upper limit to PV yield enhancement and current mismatch within modules exposed to different kinds of reflectors. Our approach helps assessing already-existing natural and exotic reflectors, and inspire novel reflectors for enhanced PV yield and economic benefits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
期刊最新文献
2024 Index IEEE Journal of Photovoltaics Vol. 14 Design and Development of a New Smart Portable I-V Tracer Table of Contents Front Cover TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1