Ahmed Shawky Elbhrawy, Mohamed A. Belal, Mohamed Sameh Hassanein
{"title":"AIRA-ML:汽车保险风险评估-使用重采样方法的机器学习模型","authors":"Ahmed Shawky Elbhrawy, Mohamed A. Belal, Mohamed Sameh Hassanein","doi":"10.14569/ijacsa.2023.0140966","DOIUrl":null,"url":null,"abstract":"Predicting underwriting risk has become a major challenge due to the imbalanced datasets in the field. A real-world imbalanced dataset is used in this work with 12 variables in 30144 cases, where most of the cases were classified as \"accepting the insurance request\", while a small percentage classified as \"refusing insurance\". This work developed 55 machine learning (ML) models to predict whether or not to renew policies. The models were developed using the original dataset and four data-level approaches resampling techniques: random oversampling, SMOTE, random undersampling, and hybrid methods with 11 ML algorithms to address the issue of imbalanced data (11 ML× (4 resampling techniques + unbalanced datasets) = 55 ML models). Seven classifier efficiency measures were used to evaluate these 55 models that were developed using 11 ML algorithms: logistic regression (LR), random forest (RF), artificial neural network (ANN), multilayer perceptron (MLP), support vector machine (SVM), naive Bayes (NB), decision tree (DT), XGBoost, k-nearest neighbors (KNN), stochastic gradient boosting (SGB), and AdaBoost. The seven classifier efficiency measures namely are accuracy, sensitivity, specificity, AUC, precision, F1-measure, and kappa. CRISP-DM methodology is utilisied to ensure that studies are conducted in a rigorous and systematic manner. Additionally, RapidMiner software was used to apply the algorithms and analyze the data, which highlighted the potential of ML to improve the accuracy of risk assessment in insurance underwriting. The results showed that all ML classifiers became more effective when using resampling strategies; where Hybrid resampling methods improved the performance of machine learning models on imbalanced data with an accuracy of 0.9967 and kappa statistics of 0.992 for the RF classifier.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"15 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AIRA-ML: Auto Insurance Risk Assessment-Machine Learning Model using Resampling Methods\",\"authors\":\"Ahmed Shawky Elbhrawy, Mohamed A. Belal, Mohamed Sameh Hassanein\",\"doi\":\"10.14569/ijacsa.2023.0140966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting underwriting risk has become a major challenge due to the imbalanced datasets in the field. A real-world imbalanced dataset is used in this work with 12 variables in 30144 cases, where most of the cases were classified as \\\"accepting the insurance request\\\", while a small percentage classified as \\\"refusing insurance\\\". This work developed 55 machine learning (ML) models to predict whether or not to renew policies. The models were developed using the original dataset and four data-level approaches resampling techniques: random oversampling, SMOTE, random undersampling, and hybrid methods with 11 ML algorithms to address the issue of imbalanced data (11 ML× (4 resampling techniques + unbalanced datasets) = 55 ML models). Seven classifier efficiency measures were used to evaluate these 55 models that were developed using 11 ML algorithms: logistic regression (LR), random forest (RF), artificial neural network (ANN), multilayer perceptron (MLP), support vector machine (SVM), naive Bayes (NB), decision tree (DT), XGBoost, k-nearest neighbors (KNN), stochastic gradient boosting (SGB), and AdaBoost. The seven classifier efficiency measures namely are accuracy, sensitivity, specificity, AUC, precision, F1-measure, and kappa. CRISP-DM methodology is utilisied to ensure that studies are conducted in a rigorous and systematic manner. Additionally, RapidMiner software was used to apply the algorithms and analyze the data, which highlighted the potential of ML to improve the accuracy of risk assessment in insurance underwriting. The results showed that all ML classifiers became more effective when using resampling strategies; where Hybrid resampling methods improved the performance of machine learning models on imbalanced data with an accuracy of 0.9967 and kappa statistics of 0.992 for the RF classifier.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
AIRA-ML: Auto Insurance Risk Assessment-Machine Learning Model using Resampling Methods
Predicting underwriting risk has become a major challenge due to the imbalanced datasets in the field. A real-world imbalanced dataset is used in this work with 12 variables in 30144 cases, where most of the cases were classified as "accepting the insurance request", while a small percentage classified as "refusing insurance". This work developed 55 machine learning (ML) models to predict whether or not to renew policies. The models were developed using the original dataset and four data-level approaches resampling techniques: random oversampling, SMOTE, random undersampling, and hybrid methods with 11 ML algorithms to address the issue of imbalanced data (11 ML× (4 resampling techniques + unbalanced datasets) = 55 ML models). Seven classifier efficiency measures were used to evaluate these 55 models that were developed using 11 ML algorithms: logistic regression (LR), random forest (RF), artificial neural network (ANN), multilayer perceptron (MLP), support vector machine (SVM), naive Bayes (NB), decision tree (DT), XGBoost, k-nearest neighbors (KNN), stochastic gradient boosting (SGB), and AdaBoost. The seven classifier efficiency measures namely are accuracy, sensitivity, specificity, AUC, precision, F1-measure, and kappa. CRISP-DM methodology is utilisied to ensure that studies are conducted in a rigorous and systematic manner. Additionally, RapidMiner software was used to apply the algorithms and analyze the data, which highlighted the potential of ML to improve the accuracy of risk assessment in insurance underwriting. The results showed that all ML classifiers became more effective when using resampling strategies; where Hybrid resampling methods improved the performance of machine learning models on imbalanced data with an accuracy of 0.9967 and kappa statistics of 0.992 for the RF classifier.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications