受限玻尔兹曼机器学习增强糖尿病视网膜病变检测

IF 0.7 Q3 COMPUTER SCIENCE, THEORY & METHODS International Journal of Advanced Computer Science and Applications Pub Date : 2023-01-01 DOI:10.14569/ijacsa.2023.0140961
Venkateswara Rao Naramala, B. Anjanee Kumar, Vuda Sreenivasa Rao, Annapurna Mishra, Shaikh Abdul Hannan, Yousef A.Baker El-Ebiary, R. Manikandan
{"title":"受限玻尔兹曼机器学习增强糖尿病视网膜病变检测","authors":"Venkateswara Rao Naramala, B. Anjanee Kumar, Vuda Sreenivasa Rao, Annapurna Mishra, Shaikh Abdul Hannan, Yousef A.Baker El-Ebiary, R. Manikandan","doi":"10.14569/ijacsa.2023.0140961","DOIUrl":null,"url":null,"abstract":"Diabetes is a potentially sight-threatening condition that can lead to blindness if left undetected. Timely diagnosis of diabetic retinopathy, a persistent eye ailment, is critical to prevent irreversible vision loss. However, the traditional method of diagnosing diabetic retinopathy through retinal testing by ophthalmologists is labor-intensive and time-consuming. Additionally, early identification of glaucoma, indicated by the Cup-to-Disc Ratio (CDR), is vital to prevent vision impairment, yet its subtle initial symptoms make timely detection challenging. This research addresses these diagnostic challenges by leveraging machine learning and deep learning techniques. In particular, the study introduces the application of Restricted Boltzmann Machines (RBM) to the domain. By extracting and analyzing multiple features from retinal images, the proposed model aims to accurately categorize anomalies and automate the diagnostic process. The investigation further advances with the utilization of a U-network model for optic segmentation and employs the Squirrel Search Algorithm (SSA) to fine-tune RBM hyperparameters for optimal performance. The experimental evaluation conducted on the RIM-ONE DL dataset demonstrates the efficacy of the proposed methodology. A comprehensive comparison of results against previous prediction models is carried out, assessing accuracy, cross-validation, and Receiver Operating Characteristic (ROC) metrics. Remarkably, the proposed model achieves an accuracy value of 99.2% on the RIM-ONE DL dataset. By bridging the gap between automated diagnosis and ophthalmological practice, this research contributes significantly to the medical field. The model's robust performance and superior accuracy offer a promising avenue to support healthcare professionals in enhancing their decision-making processes, ultimately improving the quality of care for patients with retinal anomalies.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"67 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Diabetic Retinopathy Detection Through Machine Learning with Restricted Boltzmann Machines\",\"authors\":\"Venkateswara Rao Naramala, B. Anjanee Kumar, Vuda Sreenivasa Rao, Annapurna Mishra, Shaikh Abdul Hannan, Yousef A.Baker El-Ebiary, R. Manikandan\",\"doi\":\"10.14569/ijacsa.2023.0140961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes is a potentially sight-threatening condition that can lead to blindness if left undetected. Timely diagnosis of diabetic retinopathy, a persistent eye ailment, is critical to prevent irreversible vision loss. However, the traditional method of diagnosing diabetic retinopathy through retinal testing by ophthalmologists is labor-intensive and time-consuming. Additionally, early identification of glaucoma, indicated by the Cup-to-Disc Ratio (CDR), is vital to prevent vision impairment, yet its subtle initial symptoms make timely detection challenging. This research addresses these diagnostic challenges by leveraging machine learning and deep learning techniques. In particular, the study introduces the application of Restricted Boltzmann Machines (RBM) to the domain. By extracting and analyzing multiple features from retinal images, the proposed model aims to accurately categorize anomalies and automate the diagnostic process. The investigation further advances with the utilization of a U-network model for optic segmentation and employs the Squirrel Search Algorithm (SSA) to fine-tune RBM hyperparameters for optimal performance. The experimental evaluation conducted on the RIM-ONE DL dataset demonstrates the efficacy of the proposed methodology. A comprehensive comparison of results against previous prediction models is carried out, assessing accuracy, cross-validation, and Receiver Operating Characteristic (ROC) metrics. Remarkably, the proposed model achieves an accuracy value of 99.2% on the RIM-ONE DL dataset. By bridging the gap between automated diagnosis and ophthalmological practice, this research contributes significantly to the medical field. The model's robust performance and superior accuracy offer a promising avenue to support healthcare professionals in enhancing their decision-making processes, ultimately improving the quality of care for patients with retinal anomalies.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2023.0140961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种潜在的视力威胁疾病,如果不及时发现,可能会导致失明。糖尿病视网膜病变是一种持续性的眼部疾病,及时诊断对于预防不可逆的视力丧失至关重要。然而,传统的由眼科医生通过视网膜检查来诊断糖尿病视网膜病变的方法是费时费力的。此外,青光眼的早期识别,由杯盘比(CDR)指示,对预防视力损害至关重要,但其微妙的初始症状使及时发现具有挑战性。本研究通过利用机器学习和深度学习技术解决了这些诊断挑战。特别介绍了受限玻尔兹曼机(RBM)在该领域的应用。该模型通过提取和分析视网膜图像中的多种特征,实现对异常的准确分类和自动诊断。研究进一步利用u -网络模型进行光学分割,并采用松鼠搜索算法(SSA)微调RBM超参数以获得最佳性能。在RIM-ONE DL数据集上进行的实验评估证明了该方法的有效性。将结果与先前的预测模型进行全面比较,评估准确性、交叉验证和受试者工作特征(ROC)指标。值得注意的是,该模型在RIM-ONE DL数据集上的准确率达到了99.2%。通过弥合自动诊断与眼科实践之间的差距,本研究对医学领域做出了重大贡献。该模型的强大性能和卓越的准确性提供了一个有前途的途径,以支持医疗保健专业人员在加强他们的决策过程,最终提高护理质量的视网膜异常患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Diabetic Retinopathy Detection Through Machine Learning with Restricted Boltzmann Machines
Diabetes is a potentially sight-threatening condition that can lead to blindness if left undetected. Timely diagnosis of diabetic retinopathy, a persistent eye ailment, is critical to prevent irreversible vision loss. However, the traditional method of diagnosing diabetic retinopathy through retinal testing by ophthalmologists is labor-intensive and time-consuming. Additionally, early identification of glaucoma, indicated by the Cup-to-Disc Ratio (CDR), is vital to prevent vision impairment, yet its subtle initial symptoms make timely detection challenging. This research addresses these diagnostic challenges by leveraging machine learning and deep learning techniques. In particular, the study introduces the application of Restricted Boltzmann Machines (RBM) to the domain. By extracting and analyzing multiple features from retinal images, the proposed model aims to accurately categorize anomalies and automate the diagnostic process. The investigation further advances with the utilization of a U-network model for optic segmentation and employs the Squirrel Search Algorithm (SSA) to fine-tune RBM hyperparameters for optimal performance. The experimental evaluation conducted on the RIM-ONE DL dataset demonstrates the efficacy of the proposed methodology. A comprehensive comparison of results against previous prediction models is carried out, assessing accuracy, cross-validation, and Receiver Operating Characteristic (ROC) metrics. Remarkably, the proposed model achieves an accuracy value of 99.2% on the RIM-ONE DL dataset. By bridging the gap between automated diagnosis and ophthalmological practice, this research contributes significantly to the medical field. The model's robust performance and superior accuracy offer a promising avenue to support healthcare professionals in enhancing their decision-making processes, ultimately improving the quality of care for patients with retinal anomalies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
22.20%
发文量
519
期刊介绍: IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications
期刊最新文献
Comparison of K-Nearest Neighbor, Naive Bayes Classifier, Decision Tree, and Logistic Regression in Classification of Non-Performing Financing Simulation of fire exposure behavior to building structural elements using LISA FEA V.8. An Exploration into Hybrid Agile Development Approach A Study on Sentiment Analysis Techniques of Twitter Data Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1