评估实际组合模块变化对飞机发动机整体性能影响的虚拟过程

IF 1.1 Q4 ENGINEERING, MECHANICAL Journal of the Global Power and Propulsion Society Pub Date : 2023-03-13 DOI:10.33737/jgpps/160055
Jan Goeing, Hendrik Seehausen, Lennart Stania, Nicolas Nuebel, Julian Salomon, Panagiotis Ignatidis, Friedrich Dinkelacker, Michael Beer, Berend Berend, Joerg Seume, Jens Friedrichs
{"title":"评估实际组合模块变化对飞机发动机整体性能影响的虚拟过程","authors":"Jan Goeing, Hendrik Seehausen, Lennart Stania, Nicolas Nuebel, Julian Salomon, Panagiotis Ignatidis, Friedrich Dinkelacker, Michael Beer, Berend Berend, Joerg Seume, Jens Friedrichs","doi":"10.33737/jgpps/160055","DOIUrl":null,"url":null,"abstract":"The effects of real combined variances in components and modules of aero engines, due to production tolerances or deterioration, on the performance of an aircraft engine are analysed in a knowledge-based process. For this purpose, an aero-thermodynamic virtual evaluation process that combines physical and probabilistic models to determine the sensitivities in the local module aerodynamics and the global overall performance is developed. Therefore, an automatic process that digitises, parameterises, reconstructs and analyses the geometry automatically using the example of a real turbofan high-pressure turbine blade is developed. The influence on the local aerodynamics of the reconstructed blade is investigated via a computational fluid dynamics (CFD) simulations. The results of the high-pressure turbine (HPT) CFD as well as of a Gas-Path-Analysis for further modules, such as the compressors and the low-pressure turbine, are transferred into a simulation of the performance of the whole aircraft engine to evaluate the overall performance. All results are used to train, validate and test several deep learning architectures. These metamodels are utilised for a global sensitivity analysis that is able to evaluate the sensitivities and interactions. On the one hand, the results show that the aerodynamics (especially the efficiency <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:msub><mml:mi>η</mml:mi><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula> and capacity <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:msub><mml:mrow><mml:mover><mml:mi>m</mml:mi><mml:mo>˙</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula>) are particularly driven by the variation of the stagger angle. On the other hand, <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:msub><mml:mi>η</mml:mi><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula> is significantly related to exhaust gas temperature (Tt5), while specific fuel consumption (SFC) and mass flow <inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"><mml:msub><mml:mrow><mml:mover><mml:mi>m</mml:mi><mml:mo>˙</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula> are related to HPC exit temperature (Tt3). However, it can be seen that the high-pressure compressor has the most significant impact on the overall performance. This novel knowledge-based approach can accurately determine the impact of component variances on overall performance and complement experience-based approaches.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual process for evaluating the influence of real combined module variations on the overall performance of an aircraft engine\",\"authors\":\"Jan Goeing, Hendrik Seehausen, Lennart Stania, Nicolas Nuebel, Julian Salomon, Panagiotis Ignatidis, Friedrich Dinkelacker, Michael Beer, Berend Berend, Joerg Seume, Jens Friedrichs\",\"doi\":\"10.33737/jgpps/160055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of real combined variances in components and modules of aero engines, due to production tolerances or deterioration, on the performance of an aircraft engine are analysed in a knowledge-based process. For this purpose, an aero-thermodynamic virtual evaluation process that combines physical and probabilistic models to determine the sensitivities in the local module aerodynamics and the global overall performance is developed. Therefore, an automatic process that digitises, parameterises, reconstructs and analyses the geometry automatically using the example of a real turbofan high-pressure turbine blade is developed. The influence on the local aerodynamics of the reconstructed blade is investigated via a computational fluid dynamics (CFD) simulations. The results of the high-pressure turbine (HPT) CFD as well as of a Gas-Path-Analysis for further modules, such as the compressors and the low-pressure turbine, are transferred into a simulation of the performance of the whole aircraft engine to evaluate the overall performance. All results are used to train, validate and test several deep learning architectures. These metamodels are utilised for a global sensitivity analysis that is able to evaluate the sensitivities and interactions. On the one hand, the results show that the aerodynamics (especially the efficiency <inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:msub><mml:mi>η</mml:mi><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula> and capacity <inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mover><mml:mi>m</mml:mi><mml:mo>˙</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula>) are particularly driven by the variation of the stagger angle. On the other hand, <inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:msub><mml:mi>η</mml:mi><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula> is significantly related to exhaust gas temperature (Tt5), while specific fuel consumption (SFC) and mass flow <inline-formula><mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mml:msub><mml:mrow><mml:mover><mml:mi>m</mml:mi><mml:mo>˙</mml:mo></mml:mover></mml:mrow><mml:mrow><mml:mi>H</mml:mi><mml:mi>P</mml:mi><mml:mi>T</mml:mi></mml:mrow></mml:msub></mml:math></inline-formula> are related to HPC exit temperature (Tt3). However, it can be seen that the high-pressure compressor has the most significant impact on the overall performance. This novel knowledge-based approach can accurately determine the impact of component variances on overall performance and complement experience-based approaches.\",\"PeriodicalId\":53002,\"journal\":{\"name\":\"Journal of the Global Power and Propulsion Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Global Power and Propulsion Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33737/jgpps/160055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/160055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在基于知识的过程中,分析了航空发动机部件和模块由于生产公差或劣化而产生的实际组合偏差对航空发动机性能的影响。为此,开发了一种结合物理模型和概率模型的气动-热力学虚拟评估过程,以确定局部模块空气动力学和全局整体性能的敏感性。为此,以实际涡扇高压涡轮叶片为例,开发了一种对叶片几何图形进行数字化、参数化、重构和自动分析的自动化流程。通过计算流体动力学(CFD)模拟研究了叶片局部空气动力学的影响。高压涡轮(HPT) CFD以及其他模块(如压气机和低压涡轮)的气路分析结果被转换为整个飞机发动机的性能模拟,以评估整体性能。所有结果用于训练、验证和测试几个深度学习架构。这些元模型用于能够评估敏感性和相互作用的全局敏感性分析。一方面,结果表明空气动力学(特别是效率<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub>< /mml:msub>< mml:mrow></mml: mrow></mml: mrow></mml: mrow></mml: mrow></mml:msub></mml: msub></mml: msub></mml: mrow></mml:msub></mml: msub></mml:math></inline-formula>;和能力& lt; inline-formula> & lt; mml:数学xmlns: mml = " http://www.w3.org/1998/Math/MathML "显示= =“滚动”比“内联”溢出;& lt; mml: msub> & lt; mml: mrow> & lt; mml: mover> & lt; mml: mi> m< / mml: mi> & lt; mml: mo>˙& lt; / mml: mo> & lt; / mml: mover> & lt; / mml: mrow> & lt; mml: mrow> & lt; mml: mi> H< / mml: mi> & lt; mml: mi>术中;/ mml: mi> & lt; mml: mi> T< / mml: mi> & lt; / mml: mrow> & lt; / mml: msub> & lt; / mml: math> & lt; / inline-formula>)尤其受变化错开角的。另一方面,<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:msub>< /mml:mrow></mml: mrow></mml: mrow></mml: mrow></mml: mrow></mml: mrow></mml: mrow></mml:msub></mml: msub></mml: mrow></mml:msub></mml:math></inline-formula>与废气温度(Tt5)显著相关;而燃油消耗率(证监会)和质量流& lt; inline-formula> & lt; mml:数学xmlns: mml = " http://www.w3.org/1998/Math/MathML "显示= =“滚动”比“内联”溢出;& lt; mml: msub> & lt; mml: mrow> & lt; mml: mover> & lt; mml: mi> m< / mml: mi> & lt; mml: mo>˙& lt; / mml: mo> & lt; / mml: mover> & lt; / mml: mrow> & lt; mml: mrow> & lt; mml: mi> H< / mml: mi> & lt; mml: mi>术中;/ mml: mi> & lt; mml: mi> T< / mml: mi> & lt; / mml: mrow> & lt; / mml: msub> & lt; / mml: math> & lt; / inline-formula>与HPC出口温度(Tt3)有关。但可以看出,高压压缩机对整体性能的影响最为显著。这种新颖的基于知识的方法可以准确地确定组件差异对整体性能的影响,并补充基于经验的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Virtual process for evaluating the influence of real combined module variations on the overall performance of an aircraft engine
The effects of real combined variances in components and modules of aero engines, due to production tolerances or deterioration, on the performance of an aircraft engine are analysed in a knowledge-based process. For this purpose, an aero-thermodynamic virtual evaluation process that combines physical and probabilistic models to determine the sensitivities in the local module aerodynamics and the global overall performance is developed. Therefore, an automatic process that digitises, parameterises, reconstructs and analyses the geometry automatically using the example of a real turbofan high-pressure turbine blade is developed. The influence on the local aerodynamics of the reconstructed blade is investigated via a computational fluid dynamics (CFD) simulations. The results of the high-pressure turbine (HPT) CFD as well as of a Gas-Path-Analysis for further modules, such as the compressors and the low-pressure turbine, are transferred into a simulation of the performance of the whole aircraft engine to evaluate the overall performance. All results are used to train, validate and test several deep learning architectures. These metamodels are utilised for a global sensitivity analysis that is able to evaluate the sensitivities and interactions. On the one hand, the results show that the aerodynamics (especially the efficiency ηHPT and capacity m˙HPT) are particularly driven by the variation of the stagger angle. On the other hand, ηHPT is significantly related to exhaust gas temperature (Tt5), while specific fuel consumption (SFC) and mass flow m˙HPT are related to HPC exit temperature (Tt3). However, it can be seen that the high-pressure compressor has the most significant impact on the overall performance. This novel knowledge-based approach can accurately determine the impact of component variances on overall performance and complement experience-based approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
期刊最新文献
Thermodynamic performance study of simplified precooled engine cycle with coupling power output Direct multi-fidelity integration of 3D CFD models in a gas turbine with numerical zooming method A novel performance adaptation method for aero-engine matching over a wide operating range Swirling flow field reconstruction and cooling performance analysis based on experimental observations using physics-informed neural networks Flow physics during durge of an axial-centrifugal compressor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1