Adelino Handa, Rosa M. F. Baptista, Daniela Santos, Bruna Silva, João Oliveira, Bernardo Almeida, Etelvina de Matos Gomes, Michael Belsley
{"title":"生物相容性聚合物基质中由boc - ph - leu自组装二肽包体组成的功能化复合纳米纤维的介电和能量收集性能","authors":"Adelino Handa, Rosa M. F. Baptista, Daniela Santos, Bruna Silva, João Oliveira, Bernardo Almeida, Etelvina de Matos Gomes, Michael Belsley","doi":"10.1007/s43939-023-00062-6","DOIUrl":null,"url":null,"abstract":"Abstract Hybrid bionanomaterials were produced through electrospinning, incorporating the dipeptide Boc- l -phenylalanyl- l -leucine into nanofibers of biocompatible polymers. Scanning electron microscopy confirmed the uniformity of the nanofibers, with diameters ranging from 0.56 to 1.61 µm. The dielectric properties of the nanofibers were characterized using impedance spectroscopy, assessing temperature and frequency dependencies. Notably, the composite micro/nanofibers exhibited semiconducting dielectric behavior with bandgap energies of 4–5 eV, and their analysis revealed increased dielectric constant with temperature due to enhanced charge mobility. The successful incorporation of the dipeptide was verified by Maxwell–Wagner interfacial polarization, and the Havriliak–Negami model disclosed insights into electric permittivity. Furthermore, the fibers demonstrated pyroelectric and piezoelectric responses, with Boc-Phe-Leu@PLLA nanofibers having the highest piezoelectric coefficient of 85 pC/N. These findings highlight the influence of dipeptide nanostructures on dielectric, pyroelectric, and piezoelectric properties, suggesting the potential of polymeric micro/nanofibers as efficient piezoelectric energy generators for portable and wearable devices. Graphical Abstract","PeriodicalId":34625,"journal":{"name":"Discover Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dielectric and energy harvesting properties of functionalized composite nanofibers consisting of Boc-Phe-Leu self-assembled dipeptide inclusions in biocompatible polymeric matrices\",\"authors\":\"Adelino Handa, Rosa M. F. Baptista, Daniela Santos, Bruna Silva, João Oliveira, Bernardo Almeida, Etelvina de Matos Gomes, Michael Belsley\",\"doi\":\"10.1007/s43939-023-00062-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Hybrid bionanomaterials were produced through electrospinning, incorporating the dipeptide Boc- l -phenylalanyl- l -leucine into nanofibers of biocompatible polymers. Scanning electron microscopy confirmed the uniformity of the nanofibers, with diameters ranging from 0.56 to 1.61 µm. The dielectric properties of the nanofibers were characterized using impedance spectroscopy, assessing temperature and frequency dependencies. Notably, the composite micro/nanofibers exhibited semiconducting dielectric behavior with bandgap energies of 4–5 eV, and their analysis revealed increased dielectric constant with temperature due to enhanced charge mobility. The successful incorporation of the dipeptide was verified by Maxwell–Wagner interfacial polarization, and the Havriliak–Negami model disclosed insights into electric permittivity. Furthermore, the fibers demonstrated pyroelectric and piezoelectric responses, with Boc-Phe-Leu@PLLA nanofibers having the highest piezoelectric coefficient of 85 pC/N. These findings highlight the influence of dipeptide nanostructures on dielectric, pyroelectric, and piezoelectric properties, suggesting the potential of polymeric micro/nanofibers as efficient piezoelectric energy generators for portable and wearable devices. Graphical Abstract\",\"PeriodicalId\":34625,\"journal\":{\"name\":\"Discover Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43939-023-00062-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43939-023-00062-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dielectric and energy harvesting properties of functionalized composite nanofibers consisting of Boc-Phe-Leu self-assembled dipeptide inclusions in biocompatible polymeric matrices
Abstract Hybrid bionanomaterials were produced through electrospinning, incorporating the dipeptide Boc- l -phenylalanyl- l -leucine into nanofibers of biocompatible polymers. Scanning electron microscopy confirmed the uniformity of the nanofibers, with diameters ranging from 0.56 to 1.61 µm. The dielectric properties of the nanofibers were characterized using impedance spectroscopy, assessing temperature and frequency dependencies. Notably, the composite micro/nanofibers exhibited semiconducting dielectric behavior with bandgap energies of 4–5 eV, and their analysis revealed increased dielectric constant with temperature due to enhanced charge mobility. The successful incorporation of the dipeptide was verified by Maxwell–Wagner interfacial polarization, and the Havriliak–Negami model disclosed insights into electric permittivity. Furthermore, the fibers demonstrated pyroelectric and piezoelectric responses, with Boc-Phe-Leu@PLLA nanofibers having the highest piezoelectric coefficient of 85 pC/N. These findings highlight the influence of dipeptide nanostructures on dielectric, pyroelectric, and piezoelectric properties, suggesting the potential of polymeric micro/nanofibers as efficient piezoelectric energy generators for portable and wearable devices. Graphical Abstract
期刊介绍:
Discover Materials is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is a broad, open access journal publishing research from across all fields of materials research.
Discover Materials covers all areas where materials are activators for innovation and disruption, providing cutting-edge research findings to researchers, academicians, students, and engineers. It considers the whole value chain, ranging from fundamental and applied research to the synthesis, characterisation, modelling and application of materials.
Moreover, we especially welcome papers connected to so-called ‘green materials’, which offer unique properties including natural abundance, low toxicity, economically affordable and versatility in terms of physical and chemical properties. They are the activators of an eco-sustainable economy serving all innovation sectors. Indeed, they can be applied in numerous scientific and technological applications including energy, electronics, building, construction and infrastructure, materials science and engineering applications and pollution management and technology. For instance, biomass-based materials can be developed as a source for biodiesel and bioethanol production, and transformed into advanced functionalized materials for applications such as the transformation of chitin into chitosan which can be further used for biomedicine, biomaterials and tissue engineering applications. Green materials for electronics are also a key vector concerning the integration of novel devices on conformable, flexible substrates with free-of-form surfaces for innovative product development. We also welcome new developments grounded on Artificial Intelligence to model, design and simulate materials and to gain new insights into materials by discovering new patterns and relations in the data.