基于改进Green-Ampt模型的非均质无限边坡降雨入渗稳定性分析

IF 3 3区 工程技术 Q2 ENGINEERING, GEOLOGICAL Canadian Geotechnical Journal Pub Date : 2023-10-12 DOI:10.1139/cgj-2023-0203
Shui-Hua Jiang, Xian Liu, Guotao Ma, Mohammad Rezania
{"title":"基于改进Green-Ampt模型的非均质无限边坡降雨入渗稳定性分析","authors":"Shui-Hua Jiang, Xian Liu, Guotao Ma, Mohammad Rezania","doi":"10.1139/cgj-2023-0203","DOIUrl":null,"url":null,"abstract":"Rainfall infiltration analysis has a great significance to the mitigation and risk assessment of rainfall-induced landslides. The original Green-Ampt (GA) model ignored the fact that a transitional layer exists in infiltration regions of soils under the rainfall permeation, therefore it cannot effectively analyze the rainfall-infiltrated heterogeneous slope considering the spatial variability of saturated hydraulic conductivity (ks). In this paper, an improved GA model is proposed for the rainfall-infiltration analysis of heterogeneous slopes. Four common slope cases are investigated to validate the effectiveness of the proposed model. An infinite slope model is taken as an illustrative example to investigate the distributions of volumetric water content and slope stability under the rainfall infiltration. The results show that the distributions of volumetric water content and factors of safety (Fs) obtained from the proposed model are in very good agreement with the numerical results of Richards equation. In contrast, the modified GA model obtains biased distributions of volumetric water content and smaller Fs for the same cases. The results show that the proposed GA model can accurately identify the location of critical slip surface of the slope, and as such it provides an efficient method for risk control analysis of slopes susceptible to landslide.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability analysis of heterogeneous infinite slopes under rainfall-infiltration by means of an improved Green-Ampt model\",\"authors\":\"Shui-Hua Jiang, Xian Liu, Guotao Ma, Mohammad Rezania\",\"doi\":\"10.1139/cgj-2023-0203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rainfall infiltration analysis has a great significance to the mitigation and risk assessment of rainfall-induced landslides. The original Green-Ampt (GA) model ignored the fact that a transitional layer exists in infiltration regions of soils under the rainfall permeation, therefore it cannot effectively analyze the rainfall-infiltrated heterogeneous slope considering the spatial variability of saturated hydraulic conductivity (ks). In this paper, an improved GA model is proposed for the rainfall-infiltration analysis of heterogeneous slopes. Four common slope cases are investigated to validate the effectiveness of the proposed model. An infinite slope model is taken as an illustrative example to investigate the distributions of volumetric water content and slope stability under the rainfall infiltration. The results show that the distributions of volumetric water content and factors of safety (Fs) obtained from the proposed model are in very good agreement with the numerical results of Richards equation. In contrast, the modified GA model obtains biased distributions of volumetric water content and smaller Fs for the same cases. The results show that the proposed GA model can accurately identify the location of critical slip surface of the slope, and as such it provides an efficient method for risk control analysis of slopes susceptible to landslide.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0203\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0203","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

降雨入渗分析对降雨诱发滑坡的减灾和风险评估具有重要意义。原有的Green-Ampt (GA)模型忽略了降雨入渗下土壤入渗区存在过渡层的事实,无法有效分析考虑饱和导水率(ks)空间变异性的降雨入渗非均质边坡。本文提出了一种改进的遗传算法,用于非均质边坡的降雨入渗分析。研究了四种常见的边坡情况,验证了该模型的有效性。以无限大边坡模型为例,研究了降雨入渗作用下土体体积含水率和边坡稳定性的分布规律。结果表明,该模型计算的体积含水率和安全系数的分布与Richards方程的数值结果吻合较好。相比之下,改进的GA模型得到了相同情况下体积含水量的偏置分布和较小的Fs。结果表明,所提出的遗传算法模型能够准确识别边坡的临界滑面位置,为滑坡易发边坡的风险控制分析提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stability analysis of heterogeneous infinite slopes under rainfall-infiltration by means of an improved Green-Ampt model
Rainfall infiltration analysis has a great significance to the mitigation and risk assessment of rainfall-induced landslides. The original Green-Ampt (GA) model ignored the fact that a transitional layer exists in infiltration regions of soils under the rainfall permeation, therefore it cannot effectively analyze the rainfall-infiltrated heterogeneous slope considering the spatial variability of saturated hydraulic conductivity (ks). In this paper, an improved GA model is proposed for the rainfall-infiltration analysis of heterogeneous slopes. Four common slope cases are investigated to validate the effectiveness of the proposed model. An infinite slope model is taken as an illustrative example to investigate the distributions of volumetric water content and slope stability under the rainfall infiltration. The results show that the distributions of volumetric water content and factors of safety (Fs) obtained from the proposed model are in very good agreement with the numerical results of Richards equation. In contrast, the modified GA model obtains biased distributions of volumetric water content and smaller Fs for the same cases. The results show that the proposed GA model can accurately identify the location of critical slip surface of the slope, and as such it provides an efficient method for risk control analysis of slopes susceptible to landslide.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Canadian Geotechnical Journal
Canadian Geotechnical Journal 地学-地球科学综合
CiteScore
7.20
自引率
5.60%
发文量
163
审稿时长
7.5 months
期刊介绍: The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling. Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.
期刊最新文献
Estimating relative density from shallow depth CPTs in normally consolidated and overconsolidated siliceous sand Kinematic response of floating single piles in saturated and nearly-saturated soil to P-waves Experimental investigation on mechanical behavior of natural soft clay by true triaxial tests Experimental study on the mechanical characteristics of NPR anchored rock under kilometer-deep buried high geostress conditions Evolution of structure and anisotropic shear stiffness of compacted loess during compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1