{"title":"参数化和非参数化操作数据分析的框架","authors":"Qi Feng, J. George Shanthikumar","doi":"10.1111/poms.14038","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces the general philosophy of the Operational Data Analytics (ODA) framework for data‐based decision modeling. The fundamental development of this framework lies in establishing the direct mapping from data to decision by identifying the appropriate class of operational statistics. The efficient decision making relies on a careful balance between data integration and decision validation . Through a canonical decision making problem under uncertainty, we show that the existing approaches (including statistical estimation and then optimization, retrospective optimization, sample average approximation, regularization, robust optimization, and robust satisficing) can all be unified through the lens of the ODA formulation. To make the key concepts accessible, we demonstrate, using a simple running example, how some of the existing approaches may become equivalent under the ODA framework, and how the ODA solution can improve the decision efficiency, especially in the small sample regime.","PeriodicalId":20623,"journal":{"name":"Production and Operations Management","volume":"67 1","pages":"0"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The framework of parametric and nonparametric operational data analytics\",\"authors\":\"Qi Feng, J. George Shanthikumar\",\"doi\":\"10.1111/poms.14038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper introduces the general philosophy of the Operational Data Analytics (ODA) framework for data‐based decision modeling. The fundamental development of this framework lies in establishing the direct mapping from data to decision by identifying the appropriate class of operational statistics. The efficient decision making relies on a careful balance between data integration and decision validation . Through a canonical decision making problem under uncertainty, we show that the existing approaches (including statistical estimation and then optimization, retrospective optimization, sample average approximation, regularization, robust optimization, and robust satisficing) can all be unified through the lens of the ODA formulation. To make the key concepts accessible, we demonstrate, using a simple running example, how some of the existing approaches may become equivalent under the ODA framework, and how the ODA solution can improve the decision efficiency, especially in the small sample regime.\",\"PeriodicalId\":20623,\"journal\":{\"name\":\"Production and Operations Management\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Production and Operations Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/poms.14038\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production and Operations Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/poms.14038","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
The framework of parametric and nonparametric operational data analytics
Abstract This paper introduces the general philosophy of the Operational Data Analytics (ODA) framework for data‐based decision modeling. The fundamental development of this framework lies in establishing the direct mapping from data to decision by identifying the appropriate class of operational statistics. The efficient decision making relies on a careful balance between data integration and decision validation . Through a canonical decision making problem under uncertainty, we show that the existing approaches (including statistical estimation and then optimization, retrospective optimization, sample average approximation, regularization, robust optimization, and robust satisficing) can all be unified through the lens of the ODA formulation. To make the key concepts accessible, we demonstrate, using a simple running example, how some of the existing approaches may become equivalent under the ODA framework, and how the ODA solution can improve the decision efficiency, especially in the small sample regime.
期刊介绍:
The mission of Production and Operations Management is to serve as the flagship research journal in operations management in manufacturing and services. The journal publishes scientific research into the problems, interest, and concerns of managers who manage product and process design, operations, and supply chains. It covers all topics in product and process design, operations, and supply chain management and welcomes papers using any research paradigm.