Yong Li, Yang Tai, Bin Yu, Tiejun Kuang, Rui Gao, Junyu Liu
{"title":"高硬度屋顶在破损和失稳时能量聚集和消散的演变与控制技术","authors":"Yong Li, Yang Tai, Bin Yu, Tiejun Kuang, Rui Gao, Junyu Liu","doi":"10.1007/s10704-023-00745-4","DOIUrl":null,"url":null,"abstract":"<div><p>The focus of this study was prevented disasters caused by the breaking of high hard roofs (HHRs) in mines. A model of the mining load-bearing capacity of a HHR cantilever beam structure (HHRCBS) was developed based on elastic foundation beam theory. The evolution of mining load-bearing capacity and energy aggregation and dissipation in HHRs were analyzed. Additionally, the dynamic working resistance experienced by hydraulic supports was quantitatively decomposed from an energy perspective. The findings indicated that (1) during mining operations, the pressure and strength of the working face were primarily governed by the stability of the HHRCBS. (2) The cantilever length significantly influenced the evolution of mining load-bearing capacity and energy aggregation and dissipation in the HHR. By reducing the length of the cantilever beam in the HHR, the effects of roof breakage on the cantilever beam structure were significantly decreased. (3) The dynamic load of the overburden and the energy released by the breakage of the HHR corresponded to 7536.1 kN, while the static load generated by the breaking of low rock blocks was 8348.3 kN. We then analyzed an integrated surface control technology for HHRs and conducted a field test in the Datong Mining District. The measured dynamic working resistance showed that the proposed integrated surface control technology could effectively prevent strong pressure during mining. </p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"245 1-2","pages":"1 - 23"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution and control technology of energy aggregation and dissipation of a high hard roof during breakage and destabilization\",\"authors\":\"Yong Li, Yang Tai, Bin Yu, Tiejun Kuang, Rui Gao, Junyu Liu\",\"doi\":\"10.1007/s10704-023-00745-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The focus of this study was prevented disasters caused by the breaking of high hard roofs (HHRs) in mines. A model of the mining load-bearing capacity of a HHR cantilever beam structure (HHRCBS) was developed based on elastic foundation beam theory. The evolution of mining load-bearing capacity and energy aggregation and dissipation in HHRs were analyzed. Additionally, the dynamic working resistance experienced by hydraulic supports was quantitatively decomposed from an energy perspective. The findings indicated that (1) during mining operations, the pressure and strength of the working face were primarily governed by the stability of the HHRCBS. (2) The cantilever length significantly influenced the evolution of mining load-bearing capacity and energy aggregation and dissipation in the HHR. By reducing the length of the cantilever beam in the HHR, the effects of roof breakage on the cantilever beam structure were significantly decreased. (3) The dynamic load of the overburden and the energy released by the breakage of the HHR corresponded to 7536.1 kN, while the static load generated by the breaking of low rock blocks was 8348.3 kN. We then analyzed an integrated surface control technology for HHRs and conducted a field test in the Datong Mining District. The measured dynamic working resistance showed that the proposed integrated surface control technology could effectively prevent strong pressure during mining. </p></div>\",\"PeriodicalId\":590,\"journal\":{\"name\":\"International Journal of Fracture\",\"volume\":\"245 1-2\",\"pages\":\"1 - 23\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fracture\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10704-023-00745-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-023-00745-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Evolution and control technology of energy aggregation and dissipation of a high hard roof during breakage and destabilization
The focus of this study was prevented disasters caused by the breaking of high hard roofs (HHRs) in mines. A model of the mining load-bearing capacity of a HHR cantilever beam structure (HHRCBS) was developed based on elastic foundation beam theory. The evolution of mining load-bearing capacity and energy aggregation and dissipation in HHRs were analyzed. Additionally, the dynamic working resistance experienced by hydraulic supports was quantitatively decomposed from an energy perspective. The findings indicated that (1) during mining operations, the pressure and strength of the working face were primarily governed by the stability of the HHRCBS. (2) The cantilever length significantly influenced the evolution of mining load-bearing capacity and energy aggregation and dissipation in the HHR. By reducing the length of the cantilever beam in the HHR, the effects of roof breakage on the cantilever beam structure were significantly decreased. (3) The dynamic load of the overburden and the energy released by the breakage of the HHR corresponded to 7536.1 kN, while the static load generated by the breaking of low rock blocks was 8348.3 kN. We then analyzed an integrated surface control technology for HHRs and conducted a field test in the Datong Mining District. The measured dynamic working resistance showed that the proposed integrated surface control technology could effectively prevent strong pressure during mining.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.