基于决策支持的物种状况评估优先级

IF 2.5 4区 管理学 Q3 MANAGEMENT Decision Analysis Pub Date : 2023-09-11 DOI:10.1287/deca.2023.0026
Ashley B. C. Goode, Erin Rivenbark, Jessica A. Gilbert, Conor P. McGowan
{"title":"基于决策支持的物种状况评估优先级","authors":"Ashley B. C. Goode, Erin Rivenbark, Jessica A. Gilbert, Conor P. McGowan","doi":"10.1287/deca.2023.0026","DOIUrl":null,"url":null,"abstract":"Species status assessments are used to inform U.S. Fish and Wildlife Service (USFWS) decision making for Endangered Species Act (ESA) classification decisions, recovery planning, and more. The large number of species that require assessment and uncertainty in the data available impede the process of assigning and completing the assessments, which makes creating a multiyear work plan extremely difficult. An optimized triaging system that maximizes the use of the best available information while managing the complex ESA workload and meeting deadlines is necessary. We used a structured decision-making framework to approach the problem with the goal of creating a prioritization tool that would be effective at scheduling assessments, given the best information available and priorities of the USFWS. We collected data on the species awaiting assessment and developed a value function that incorporates existing deadlines, taxonomic uncertainty, controversy of the species, and population and habitat data availability and quality. We used a constrained linear optimization algorithm to maximize the value function and ensure that workload capacity was not exceeded. A comparison of model scenarios indicates that imposed deadlines impact the model more than capacity constraints. Additionally, differential weighting of the metrics significantly affected the outcome of the model. In the future, elicitation of metric weights should be done routinely before the model is run for use in official planning to ensure alignment with current USFWS priorities. Output from this optimization can be used to inform a five-year work plan, allocate resources, and discuss workforce decisions. History: This paper has been accepted for the Decision Analysis Special Issue on Decision Analysis to Further Environmental Sustainability. Funding: This work was funded via an inter-agency agreement between the USFWS and the USGS and subsequently by a Research Work Order contract between the USGS and the University of Florida [Grant G21AC00016].","PeriodicalId":46460,"journal":{"name":"Decision Analysis","volume":"52 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prioritization of Species Status Assessments for Decision Support\",\"authors\":\"Ashley B. C. Goode, Erin Rivenbark, Jessica A. Gilbert, Conor P. McGowan\",\"doi\":\"10.1287/deca.2023.0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Species status assessments are used to inform U.S. Fish and Wildlife Service (USFWS) decision making for Endangered Species Act (ESA) classification decisions, recovery planning, and more. The large number of species that require assessment and uncertainty in the data available impede the process of assigning and completing the assessments, which makes creating a multiyear work plan extremely difficult. An optimized triaging system that maximizes the use of the best available information while managing the complex ESA workload and meeting deadlines is necessary. We used a structured decision-making framework to approach the problem with the goal of creating a prioritization tool that would be effective at scheduling assessments, given the best information available and priorities of the USFWS. We collected data on the species awaiting assessment and developed a value function that incorporates existing deadlines, taxonomic uncertainty, controversy of the species, and population and habitat data availability and quality. We used a constrained linear optimization algorithm to maximize the value function and ensure that workload capacity was not exceeded. A comparison of model scenarios indicates that imposed deadlines impact the model more than capacity constraints. Additionally, differential weighting of the metrics significantly affected the outcome of the model. In the future, elicitation of metric weights should be done routinely before the model is run for use in official planning to ensure alignment with current USFWS priorities. Output from this optimization can be used to inform a five-year work plan, allocate resources, and discuss workforce decisions. History: This paper has been accepted for the Decision Analysis Special Issue on Decision Analysis to Further Environmental Sustainability. Funding: This work was funded via an inter-agency agreement between the USFWS and the USGS and subsequently by a Research Work Order contract between the USGS and the University of Florida [Grant G21AC00016].\",\"PeriodicalId\":46460,\"journal\":{\"name\":\"Decision Analysis\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1287/deca.2023.0026\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/deca.2023.0026","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

物种状态评估用于为美国鱼类和野生动物管理局(USFWS)制定濒危物种法案(ESA)分类决策、恢复计划等决策提供信息。需要评估的物种数量众多,现有数据的不确定性阻碍了分配和完成评估的过程,这使得制定多年工作计划极其困难。有必要建立一个优化的分诊系统,在管理复杂的欧空局工作量和按时完成任务的同时,最大限度地利用最佳可用信息。我们使用了一个结构化的决策框架来处理这个问题,目标是创建一个优先排序工具,该工具将有效地安排评估,给出最佳的可用信息和USFWS的优先级。我们收集了待评估物种的数据,并开发了一个包含现有截止日期、分类不确定性、物种争议、种群和栖息地数据可用性和质量的价值函数。我们使用约束线性优化算法来最大化值函数,并确保不超过工作负载容量。模型场景的比较表明,强加的最后期限比容量限制对模型的影响更大。此外,指标的不同权重显著影响模型的结果。在未来,在正式计划中使用模型之前,应该常规地进行公制权重的提取,以确保与当前USFWS的优先级保持一致。此优化的输出可用于通知五年工作计划、分配资源和讨论劳动力决策。历史:本文已被《决策分析》特刊《决策分析促进环境可持续性》接受。经费:这项工作由USFWS和USGS之间的机构间协议资助,随后由USGS和佛罗里达大学之间的研究工作订单合同资助[Grant G21AC00016]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prioritization of Species Status Assessments for Decision Support
Species status assessments are used to inform U.S. Fish and Wildlife Service (USFWS) decision making for Endangered Species Act (ESA) classification decisions, recovery planning, and more. The large number of species that require assessment and uncertainty in the data available impede the process of assigning and completing the assessments, which makes creating a multiyear work plan extremely difficult. An optimized triaging system that maximizes the use of the best available information while managing the complex ESA workload and meeting deadlines is necessary. We used a structured decision-making framework to approach the problem with the goal of creating a prioritization tool that would be effective at scheduling assessments, given the best information available and priorities of the USFWS. We collected data on the species awaiting assessment and developed a value function that incorporates existing deadlines, taxonomic uncertainty, controversy of the species, and population and habitat data availability and quality. We used a constrained linear optimization algorithm to maximize the value function and ensure that workload capacity was not exceeded. A comparison of model scenarios indicates that imposed deadlines impact the model more than capacity constraints. Additionally, differential weighting of the metrics significantly affected the outcome of the model. In the future, elicitation of metric weights should be done routinely before the model is run for use in official planning to ensure alignment with current USFWS priorities. Output from this optimization can be used to inform a five-year work plan, allocate resources, and discuss workforce decisions. History: This paper has been accepted for the Decision Analysis Special Issue on Decision Analysis to Further Environmental Sustainability. Funding: This work was funded via an inter-agency agreement between the USFWS and the USGS and subsequently by a Research Work Order contract between the USGS and the University of Florida [Grant G21AC00016].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Decision Analysis
Decision Analysis MANAGEMENT-
CiteScore
3.10
自引率
21.10%
发文量
19
期刊最新文献
Measuring and Mitigating the Risk of Advanced Cyberattackers On the Value of Information Across Decision Problems From the Editor: 2023 Clemen–Kleinmuntz Decision Analysis Best Paper Award Reply to “Comment on ‘Whose Judgement? Reflections on Elicitation in Bayesian Analysis’ ” Whose Judgement? Reflections on Elicitation in Bayesian Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1