基于NiTi合金打印的着陆缓冲结构力学性能及形状记忆效应研究

IF 4.2 2区 工程技术 Q1 Engineering Chinese Journal of Mechanical Engineering Pub Date : 2023-09-11 DOI:10.1186/s10033-023-00898-2
Zhenglei Yu, Renlong Xin, Zezhou Xu, Yining Zhu, Xiaolong Zhang, Shijie Hao, Zhihui Zhang, Ping Liang
{"title":"基于NiTi合金打印的着陆缓冲结构力学性能及形状记忆效应研究","authors":"Zhenglei Yu, Renlong Xin, Zezhou Xu, Yining Zhu, Xiaolong Zhang, Shijie Hao, Zhihui Zhang, Ping Liang","doi":"10.1186/s10033-023-00898-2","DOIUrl":null,"url":null,"abstract":"Abstract With the deepening of human research on deep space exploration, our research on the soft landing methods of landers has gradually deepened. Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution. Based on the energy-absorbing structure of the leg of the interstellar lander, this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus . The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying, but also can easily withstand the huge counter-impact force. The predatory feet structure of the Odontodactylus scyllarus , like a symmetrical cone, shows excellent rigidity and energy absorption capacity. Inspired by this discovery, we used SLM technology to design and manufacture two nickel-titanium samples, which respectively show high elasticity, shape memory, and get better energy absorption capacity. This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":4.2000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the Mechanical Properties and Shape Memory Effect of Landing Buffer Structure Based on NiTi Alloy Printing\",\"authors\":\"Zhenglei Yu, Renlong Xin, Zezhou Xu, Yining Zhu, Xiaolong Zhang, Shijie Hao, Zhihui Zhang, Ping Liang\",\"doi\":\"10.1186/s10033-023-00898-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract With the deepening of human research on deep space exploration, our research on the soft landing methods of landers has gradually deepened. Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution. Based on the energy-absorbing structure of the leg of the interstellar lander, this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus . The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying, but also can easily withstand the huge counter-impact force. The predatory feet structure of the Odontodactylus scyllarus , like a symmetrical cone, shows excellent rigidity and energy absorption capacity. Inspired by this discovery, we used SLM technology to design and manufacture two nickel-titanium samples, which respectively show high elasticity, shape memory, and get better energy absorption capacity. This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.\",\"PeriodicalId\":10115,\"journal\":{\"name\":\"Chinese Journal of Mechanical Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s10033-023-00898-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00898-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

随着人类对深空探测研究的不断深入,我们对着陆器软着陆方法的研究也逐渐深入。在着陆器的支腿结构上增加缓冲吸能结构已成为一种有效的设计方案。本文以星际着陆器腿的吸能结构为基础,研究了剑齿虎(Odontodactylus scyllarus)掠食性足的外观特征。剑齿虎的掠食性足不仅能在捕食时高度撞击猎物,还能轻松承受巨大的反冲击力。剑齿虎的掠食性足部结构呈对称锥形,具有良好的刚性和能量吸收能力。受这一发现的启发,我们利用SLM技术设计制造了两种镍钛样品,分别表现出高弹性、形状记忆和较好的吸能能力。本研究为利用仿生3D打印技术和镍钛合金设计制造高机械吸能缓冲结构提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on the Mechanical Properties and Shape Memory Effect of Landing Buffer Structure Based on NiTi Alloy Printing
Abstract With the deepening of human research on deep space exploration, our research on the soft landing methods of landers has gradually deepened. Adding a buffer and energy-absorbing structure to the leg structure of the lander has become an effective design solution. Based on the energy-absorbing structure of the leg of the interstellar lander, this paper studies the appearance characteristics of the predatory feet of the Odontodactylus scyllarus . The predatory feet of the Odontodactylus scyllarus can not only hit the prey highly when preying, but also can easily withstand the huge counter-impact force. The predatory feet structure of the Odontodactylus scyllarus , like a symmetrical cone, shows excellent rigidity and energy absorption capacity. Inspired by this discovery, we used SLM technology to design and manufacture two nickel-titanium samples, which respectively show high elasticity, shape memory, and get better energy absorption capacity. This research provides an effective way to design and manufacture high-mechanical energy-absorbing buffer structures using bionic 3D printing technology and nickel-titanium alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
4.80%
发文量
3097
审稿时长
8 months
期刊介绍: Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES). The publishing scopes of CJME follow with: Mechanism and Robotics, including but not limited to -- Innovative Mechanism Design -- Mechanical Transmission -- Robot Structure Design and Control -- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…) -- Tri-Co Robotics Intelligent Manufacturing Technology, including but not limited to -- Innovative Industrial Design -- Intelligent Machining Process -- Artificial Intelligence -- Micro- and Nano-manufacturing -- Material Increasing Manufacturing -- Intelligent Monitoring Technology -- Machine Fault Diagnostics and Prognostics Advanced Transportation Equipment, including but not limited to -- New Energy Vehicle Technology -- Unmanned Vehicle -- Advanced Rail Transportation -- Intelligent Transport System Ocean Engineering Equipment, including but not limited to --Equipment for Deep-sea Exploration -- Autonomous Underwater Vehicle Smart Material, including but not limited to --Special Metal Functional Materials --Advanced Composite Materials --Material Forming Technology.
期刊最新文献
Motion Planning for Autonomous Driving with Real Traffic Data Validation Multi-Objective Optimization of VBHF in Deep Drawing Based on the Improved QO-Jaya Algorithm Nonlinear Impact Damage Evolution of Charpy Type and Analysis of Its Key Influencing Factors A Dual-Task Learning Approach for Bearing Anomaly Detection and State Evaluation of Safe Region Optimization of Fixture Number in Large Thin-Walled Parts Assembly Based on IPSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1