聚γ-谷氨酸影响NH3挥发、土壤氮含量和大豆幼苗生长

Lu Liu, Wenjuan Shi
{"title":"聚γ-谷氨酸影响NH3挥发、土壤氮含量和大豆幼苗生长","authors":"Lu Liu, Wenjuan Shi","doi":"10.2166/ws.2023.228","DOIUrl":null,"url":null,"abstract":"Abstract Poly-γ-glutamic acid (γ-PGA) is a soil amendment that has been shown to enhance soil water retention capacity. However, the effects of γ-PGA on soil NH3 volatilization, soil nitrogen pool, and crop growth have been rarely studied. This study aimed to investigate the effect of γ-PGA on NH3 volatilization, soil mineral nitrogen content, and soybean seed productivity. We conducted an incubation experiment and a pot experiment using two different textured soils (sandy soil and sandy loam soil) with four γ-PGA application rates (0, 0.1, 0.3, and 0.5%, w/w). The results showed that the application of γ-PGA decreased the peak value of NH3 volatilization and cumulative NH3 emission through the incubation experiment. Cumulative NH3 volatilization decreased with increasing γ-PGA application amount. The addition of γ-PGA to sandy soil and sandy loam soil increased soil N content by 17–63% and 7–33%, respectively. Based on pot experimental results and principal component analysis, we recommend the optimal rates of γ-PGA application were 0.3% (w/w) in sandy soil and 0.1% (w/w) in sandy loam soil. This study provides a theoretical basis for the addition of γ-PGA as a promising strategy to reduce NH3 volatilization and increase soil nitrogen content.","PeriodicalId":23573,"journal":{"name":"Water Science & Technology: Water Supply","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poly-<i>γ</i>-glutamic acid affects NH3 volatilization, soil nitrogen content, and soybean seedling growth\",\"authors\":\"Lu Liu, Wenjuan Shi\",\"doi\":\"10.2166/ws.2023.228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Poly-γ-glutamic acid (γ-PGA) is a soil amendment that has been shown to enhance soil water retention capacity. However, the effects of γ-PGA on soil NH3 volatilization, soil nitrogen pool, and crop growth have been rarely studied. This study aimed to investigate the effect of γ-PGA on NH3 volatilization, soil mineral nitrogen content, and soybean seed productivity. We conducted an incubation experiment and a pot experiment using two different textured soils (sandy soil and sandy loam soil) with four γ-PGA application rates (0, 0.1, 0.3, and 0.5%, w/w). The results showed that the application of γ-PGA decreased the peak value of NH3 volatilization and cumulative NH3 emission through the incubation experiment. Cumulative NH3 volatilization decreased with increasing γ-PGA application amount. The addition of γ-PGA to sandy soil and sandy loam soil increased soil N content by 17–63% and 7–33%, respectively. Based on pot experimental results and principal component analysis, we recommend the optimal rates of γ-PGA application were 0.3% (w/w) in sandy soil and 0.1% (w/w) in sandy loam soil. This study provides a theoretical basis for the addition of γ-PGA as a promising strategy to reduce NH3 volatilization and increase soil nitrogen content.\",\"PeriodicalId\":23573,\"journal\":{\"name\":\"Water Science & Technology: Water Supply\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology: Water Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology: Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚γ-谷氨酸(γ-PGA)是一种增强土壤保水能力的土壤改良剂。然而,γ-PGA对土壤NH3挥发、土壤氮库和作物生长的影响研究较少。本研究旨在探讨γ-PGA对土壤铵态氮挥发、土壤矿质氮含量及大豆种子产量的影响。采用砂质土和砂壤土两种不同质地土,分别采用4种γ-PGA施用量(0、0.1、0.3和0.5%,w/w)进行培养试验和盆栽试验。结果表明,γ-PGA的应用降低了NH3挥发峰值和累积NH3排放量。随着γ-PGA用量的增加,NH3的累积挥发量减少。在砂质土和砂壤土中添加γ-PGA可使土壤氮含量分别提高17-63%和7-33%。根据盆栽试验结果和主成分分析,建议在砂质土和砂壤土中γ-PGA的最佳施用量分别为0.3% (w/w)和0.1% (w/w)。该研究为添加γ-PGA作为减少NH3挥发和增加土壤氮含量的有效策略提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poly-γ-glutamic acid affects NH3 volatilization, soil nitrogen content, and soybean seedling growth
Abstract Poly-γ-glutamic acid (γ-PGA) is a soil amendment that has been shown to enhance soil water retention capacity. However, the effects of γ-PGA on soil NH3 volatilization, soil nitrogen pool, and crop growth have been rarely studied. This study aimed to investigate the effect of γ-PGA on NH3 volatilization, soil mineral nitrogen content, and soybean seed productivity. We conducted an incubation experiment and a pot experiment using two different textured soils (sandy soil and sandy loam soil) with four γ-PGA application rates (0, 0.1, 0.3, and 0.5%, w/w). The results showed that the application of γ-PGA decreased the peak value of NH3 volatilization and cumulative NH3 emission through the incubation experiment. Cumulative NH3 volatilization decreased with increasing γ-PGA application amount. The addition of γ-PGA to sandy soil and sandy loam soil increased soil N content by 17–63% and 7–33%, respectively. Based on pot experimental results and principal component analysis, we recommend the optimal rates of γ-PGA application were 0.3% (w/w) in sandy soil and 0.1% (w/w) in sandy loam soil. This study provides a theoretical basis for the addition of γ-PGA as a promising strategy to reduce NH3 volatilization and increase soil nitrogen content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing an optimal plan to improve irrigation efficiency using a risk-based central force algorithm Disinfection performance and synthesis conditions of the EGCG–Cu complex Selection of Real-Coded Genetic Algorithm parameters in solving simulation–optimization problems for the design of water distribution networks Evaluation of the yield and photosynthetic parameters of corn by some amendatory materials under deficit irrigation conditions Effects of applied nitrogen fertilizers and irrigation strategies on environmental protection and yield indices of winter wheat and barley in a Mediterranean climate region of Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1