用于预测人类影响系统中河流流量的主动学习卷积神经网络

IF 2.6 Q2 WATER RESOURCES Frontiers in Water Pub Date : 2023-10-17 DOI:10.3389/frwa.2023.1271780
Scott M. Reed
{"title":"用于预测人类影响系统中河流流量的主动学习卷积神经网络","authors":"Scott M. Reed","doi":"10.3389/frwa.2023.1271780","DOIUrl":null,"url":null,"abstract":"The South Platte river system contains a mixture of natural streams, reservoirs, and pipeline projects that redirect water to front range communities in Colorado. At many timepoints, a simple persistence model is the best predictor for flow from pipelines and reservoirs but at other times, flows change based on snowmelt and inputs such as reservoir fill rates, local weather, and anticipated demand. Here we find that a convolutional Long Short-Term Memory (LSTM) network is well suited to modeling flow in parts of this basin that are strongly impacted by water projects as well as ones that are relatively free from direct human modifications. Furthermore, it is found that including an active learning component in which separate Convolutional Neural Networks (CNNs) are used to classify and then select the data that is then used for training a convolutional LSTM network is advantageous. Models specific for each gauge are created by transfer of parameter from a base model and these gauge-specific models are then fine-tuned based a curated subset of training data. The result is accurate predictions for both natural flow and human influenced flow using only past river flow, reservoir capacity, and historical temperature data. In 14 of the 16 gauges modeled, the error in the prediction is reduced when using the combination of on-the-fly classification by CNN followed by analysis by either a persistence or convolutional LSTM model. The methods designed here could be applied broadly to other basins and to other situations where multiple models are needed to fit data at different times and locations.","PeriodicalId":33801,"journal":{"name":"Frontiers in Water","volume":"61 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An active learning convolutional neural network for predicting river flow in a human impacted system\",\"authors\":\"Scott M. Reed\",\"doi\":\"10.3389/frwa.2023.1271780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The South Platte river system contains a mixture of natural streams, reservoirs, and pipeline projects that redirect water to front range communities in Colorado. At many timepoints, a simple persistence model is the best predictor for flow from pipelines and reservoirs but at other times, flows change based on snowmelt and inputs such as reservoir fill rates, local weather, and anticipated demand. Here we find that a convolutional Long Short-Term Memory (LSTM) network is well suited to modeling flow in parts of this basin that are strongly impacted by water projects as well as ones that are relatively free from direct human modifications. Furthermore, it is found that including an active learning component in which separate Convolutional Neural Networks (CNNs) are used to classify and then select the data that is then used for training a convolutional LSTM network is advantageous. Models specific for each gauge are created by transfer of parameter from a base model and these gauge-specific models are then fine-tuned based a curated subset of training data. The result is accurate predictions for both natural flow and human influenced flow using only past river flow, reservoir capacity, and historical temperature data. In 14 of the 16 gauges modeled, the error in the prediction is reduced when using the combination of on-the-fly classification by CNN followed by analysis by either a persistence or convolutional LSTM model. The methods designed here could be applied broadly to other basins and to other situations where multiple models are needed to fit data at different times and locations.\",\"PeriodicalId\":33801,\"journal\":{\"name\":\"Frontiers in Water\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frwa.2023.1271780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Water","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frwa.2023.1271780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

南普拉特河系统包含天然溪流,水库和管道工程的混合物,将水重新定向到科罗拉多州的前沿社区。在许多时间点,简单的持续性模型是管道和水库流量的最佳预测器,但在其他时间,流量会根据融雪和水库填充率、当地天气和预期需求等输入而变化。在这里,我们发现卷积长短期记忆(LSTM)网络非常适合于该流域受水利工程强烈影响的部分地区以及相对不受人类直接影响的部分地区的流量建模。此外,研究发现,包括一个主动学习组件,其中使用单独的卷积神经网络(cnn)进行分类,然后选择用于训练卷积LSTM网络的数据是有利的。通过从基本模型转移参数来创建特定于每个量规的模型,然后根据精心策划的训练数据子集对这些特定于量规的模型进行微调。结果是对自然流量和人为影响流量的准确预测,仅使用过去的河流流量,水库容量和历史温度数据。在建模的16个仪表中的14个中,当使用CNN的实时分类与持久性或卷积LSTM模型的分析相结合时,预测误差减少了。这里设计的方法可以广泛应用于其他流域,以及需要多个模型来拟合不同时间和地点数据的其他情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An active learning convolutional neural network for predicting river flow in a human impacted system
The South Platte river system contains a mixture of natural streams, reservoirs, and pipeline projects that redirect water to front range communities in Colorado. At many timepoints, a simple persistence model is the best predictor for flow from pipelines and reservoirs but at other times, flows change based on snowmelt and inputs such as reservoir fill rates, local weather, and anticipated demand. Here we find that a convolutional Long Short-Term Memory (LSTM) network is well suited to modeling flow in parts of this basin that are strongly impacted by water projects as well as ones that are relatively free from direct human modifications. Furthermore, it is found that including an active learning component in which separate Convolutional Neural Networks (CNNs) are used to classify and then select the data that is then used for training a convolutional LSTM network is advantageous. Models specific for each gauge are created by transfer of parameter from a base model and these gauge-specific models are then fine-tuned based a curated subset of training data. The result is accurate predictions for both natural flow and human influenced flow using only past river flow, reservoir capacity, and historical temperature data. In 14 of the 16 gauges modeled, the error in the prediction is reduced when using the combination of on-the-fly classification by CNN followed by analysis by either a persistence or convolutional LSTM model. The methods designed here could be applied broadly to other basins and to other situations where multiple models are needed to fit data at different times and locations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Water
Frontiers in Water WATER RESOURCES-
CiteScore
4.00
自引率
6.90%
发文量
224
审稿时长
13 weeks
期刊最新文献
River-floodplain connectivity and residence times controlled by topographic bluffs along a backwater transition Rating curve development and uncertainty analysis in mountainous watersheds for informed hydrology and resource management Characterization of sewage quality and its spatiotemporal variations in a small town in Eastern Guangdong, China Model and remote-sensing-guided experimental design and hypothesis generation for monitoring snow-soil–plant interactions Precipitation fuels dissolved greenhouse gas (CO2, CH4, N2O) dynamics in a peatland-dominated headwater stream: results from a continuous monitoring setup
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1