{"title":"利用泡沫石墨烯增加阴极电极的表面积和电导率提高磷酸铁锂电池的比容量","authors":"Phurida KOKMAT, Patiphat MATSAYAMAT, Kunaree WONGRACH, Piyaporn SURINLERT, Akkawat RUAMMAITREE","doi":"10.55713/jmmm.v33i4.1779","DOIUrl":null,"url":null,"abstract":"Lithium iron phosphate (LFP) is widely used as an active material in a cathode electrode for lithium-ion batteries (LIBs). LFP has many remarkable properties such as high working voltage and excellent thermal stability. However, it suffers with slow ion diffusion and low electrical conductivity. Graphene foam has many outstanding properties such as large surface area and great electrical conductivity. These properties are suitable for improving the cathode electrode. In this work, the graphene foam was synthesized by chemical vapor deposition. The cathode electrode was prepared by dropping the LFP on the graphene foam. We found that the specific capacity of battery which contained the LFP between the anode and the graphene foam (LFP/GF) was 23.1 mAh⸳g-1 at 3C, while the specific capacity of battery which contained the graphene foam between the anode and the LFP (GF/LFP) was 112.6 mAh⸳g-1 at 3C. The diffusion coefficients of Li+ of GF/LFP was 9.1 times higher than that of LFP/GF. The specific capacity of GF/LFP was higher than that of LFP/GF at high current density due to the high ion transfer rate which arises from the graphene foam.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"21 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improvement of specific capacity of lithium iron phosphate battery by increasing the surface area and electrical conductivity of cathode electrode using graphene foam\",\"authors\":\"Phurida KOKMAT, Patiphat MATSAYAMAT, Kunaree WONGRACH, Piyaporn SURINLERT, Akkawat RUAMMAITREE\",\"doi\":\"10.55713/jmmm.v33i4.1779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium iron phosphate (LFP) is widely used as an active material in a cathode electrode for lithium-ion batteries (LIBs). LFP has many remarkable properties such as high working voltage and excellent thermal stability. However, it suffers with slow ion diffusion and low electrical conductivity. Graphene foam has many outstanding properties such as large surface area and great electrical conductivity. These properties are suitable for improving the cathode electrode. In this work, the graphene foam was synthesized by chemical vapor deposition. The cathode electrode was prepared by dropping the LFP on the graphene foam. We found that the specific capacity of battery which contained the LFP between the anode and the graphene foam (LFP/GF) was 23.1 mAh⸳g-1 at 3C, while the specific capacity of battery which contained the graphene foam between the anode and the LFP (GF/LFP) was 112.6 mAh⸳g-1 at 3C. The diffusion coefficients of Li+ of GF/LFP was 9.1 times higher than that of LFP/GF. The specific capacity of GF/LFP was higher than that of LFP/GF at high current density due to the high ion transfer rate which arises from the graphene foam.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i4.1779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i4.1779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Improvement of specific capacity of lithium iron phosphate battery by increasing the surface area and electrical conductivity of cathode electrode using graphene foam
Lithium iron phosphate (LFP) is widely used as an active material in a cathode electrode for lithium-ion batteries (LIBs). LFP has many remarkable properties such as high working voltage and excellent thermal stability. However, it suffers with slow ion diffusion and low electrical conductivity. Graphene foam has many outstanding properties such as large surface area and great electrical conductivity. These properties are suitable for improving the cathode electrode. In this work, the graphene foam was synthesized by chemical vapor deposition. The cathode electrode was prepared by dropping the LFP on the graphene foam. We found that the specific capacity of battery which contained the LFP between the anode and the graphene foam (LFP/GF) was 23.1 mAh⸳g-1 at 3C, while the specific capacity of battery which contained the graphene foam between the anode and the LFP (GF/LFP) was 112.6 mAh⸳g-1 at 3C. The diffusion coefficients of Li+ of GF/LFP was 9.1 times higher than that of LFP/GF. The specific capacity of GF/LFP was higher than that of LFP/GF at high current density due to the high ion transfer rate which arises from the graphene foam.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.