应用神经网络优化沥青发泡

Q3 Engineering Pollack Periodica Pub Date : 2023-10-17 DOI:10.1556/606.2023.00896
Ali Saleh, László Gáspár
{"title":"应用神经网络优化沥青发泡","authors":"Ali Saleh, László Gáspár","doi":"10.1556/606.2023.00896","DOIUrl":null,"url":null,"abstract":"Abstract This study uses a three-layer backpropagation neural network combined with particle swarm optimization to control the foamed bitumen in cold recycling technology. The foaming process of bitumen is non-linear and depends on dynamic temperature. By developing a neural network model, this study effectively captures the complex relationships between temperature, water content, air pressure, and the expansion ratio and half-life of foamed bitumen. The integration of particle swarm optimization enhances the accuracy and convergence of the neural network model by optimizing the initial weights. This optimization process improves the model's ability to predict and control the quality of foamed bitumen accurately. It serves as a valuable tool for the rapid development of high-quality cold asphalt design.","PeriodicalId":35003,"journal":{"name":"Pollack Periodica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing asphalt foaming using neural network\",\"authors\":\"Ali Saleh, László Gáspár\",\"doi\":\"10.1556/606.2023.00896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study uses a three-layer backpropagation neural network combined with particle swarm optimization to control the foamed bitumen in cold recycling technology. The foaming process of bitumen is non-linear and depends on dynamic temperature. By developing a neural network model, this study effectively captures the complex relationships between temperature, water content, air pressure, and the expansion ratio and half-life of foamed bitumen. The integration of particle swarm optimization enhances the accuracy and convergence of the neural network model by optimizing the initial weights. This optimization process improves the model's ability to predict and control the quality of foamed bitumen accurately. It serves as a valuable tool for the rapid development of high-quality cold asphalt design.\",\"PeriodicalId\":35003,\"journal\":{\"name\":\"Pollack Periodica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pollack Periodica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/606.2023.00896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pollack Periodica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/606.2023.00896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

摘要采用三层反向传播神经网络结合粒子群优化算法对泡沫沥青冷回收工艺进行控制。沥青的发泡过程是非线性的,与动态温度有关。本研究通过建立神经网络模型,有效捕捉了温度、含水量、气压与泡沫沥青膨胀率和半衰期之间的复杂关系。粒子群算法通过优化初始权值,提高了神经网络模型的精度和收敛性。该优化过程提高了模型对泡沫沥青质量的准确预测和控制能力。它为高质量冷沥青设计的快速发展提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing asphalt foaming using neural network
Abstract This study uses a three-layer backpropagation neural network combined with particle swarm optimization to control the foamed bitumen in cold recycling technology. The foaming process of bitumen is non-linear and depends on dynamic temperature. By developing a neural network model, this study effectively captures the complex relationships between temperature, water content, air pressure, and the expansion ratio and half-life of foamed bitumen. The integration of particle swarm optimization enhances the accuracy and convergence of the neural network model by optimizing the initial weights. This optimization process improves the model's ability to predict and control the quality of foamed bitumen accurately. It serves as a valuable tool for the rapid development of high-quality cold asphalt design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pollack Periodica
Pollack Periodica Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
82
期刊介绍: Pollack Periodica is an interdisciplinary, peer-reviewed journal that provides an international forum for the presentation, discussion and dissemination of the latest advances and developments in engineering and informatics. Pollack Periodica invites papers reporting new research and applications from a wide range of discipline, including civil, mechanical, electrical, environmental, earthquake, material and information engineering. The journal aims at reaching a wider audience, not only researchers, but also those likely to be most affected by research results, for example designers, fabricators, specialists, developers, computer scientists managers in academic, governmental and industrial communities.
期刊最新文献
Porosity and pore morphology characteristics of zirconia-alumina bioceramics The practical implementations of axes in the design of a systematic office layout Collision and contiguity in the transformation of Prishtina's urban form Concrete's fire resistance improvement with waste glass and ceramic aggregates Advanced facial recognition with LBP-URIGL hybrid descriptors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1