等离子体中Rydberg谱线形成的研究进展

IF 1.7 Q3 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Atoms Pub Date : 2023-10-17 DOI:10.3390/atoms11100133
Andrey Yu. Letunov, Valery S. Lisitsa
{"title":"等离子体中Rydberg谱线形成的研究进展","authors":"Andrey Yu. Letunov, Valery S. Lisitsa","doi":"10.3390/atoms11100133","DOIUrl":null,"url":null,"abstract":"The present review is dedicated to the problem of an array of transitions between highly-excited atomic levels. Hydrogen atoms and hydrogen-like ions in plasmas are considered here. The presented methods focus on calculation of spectral line shapes. Fast and simple methods of universal ionic profile calculation for the Hnα (Δn=1) and Hnβ (Δn=2) spectral lines are demonstrated. The universal dipole matrix elements formulas for the Hnα and Hnβ transitions are presented. A fast method for spectral line shape calculations in the presence of an external magnetic field using the formulas for universal dipole matrix elements is proposed. This approach accounts for the Doppler and Stark–Zeeman broadening mechanisms. Ion dynamics effects are treated via the frequency fluctuation model. The accuracy of the presented model is discussed. A comparison of this approach with experimental data and the results of molecular dynamics simulation is demonstrated. The kinetics equation for the populations of highly-excited ionic states is solved in the parabolic representation. The population source associated with dielectronic recombination is considered.","PeriodicalId":8629,"journal":{"name":"Atoms","volume":"25 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Rydberg Spectral Line Formation in Plasmas\",\"authors\":\"Andrey Yu. Letunov, Valery S. Lisitsa\",\"doi\":\"10.3390/atoms11100133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present review is dedicated to the problem of an array of transitions between highly-excited atomic levels. Hydrogen atoms and hydrogen-like ions in plasmas are considered here. The presented methods focus on calculation of spectral line shapes. Fast and simple methods of universal ionic profile calculation for the Hnα (Δn=1) and Hnβ (Δn=2) spectral lines are demonstrated. The universal dipole matrix elements formulas for the Hnα and Hnβ transitions are presented. A fast method for spectral line shape calculations in the presence of an external magnetic field using the formulas for universal dipole matrix elements is proposed. This approach accounts for the Doppler and Stark–Zeeman broadening mechanisms. Ion dynamics effects are treated via the frequency fluctuation model. The accuracy of the presented model is discussed. A comparison of this approach with experimental data and the results of molecular dynamics simulation is demonstrated. The kinetics equation for the populations of highly-excited ionic states is solved in the parabolic representation. The population source associated with dielectronic recombination is considered.\",\"PeriodicalId\":8629,\"journal\":{\"name\":\"Atoms\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atoms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/atoms11100133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atoms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/atoms11100133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本综述专门讨论高激发原子能级之间的一系列跃迁问题。这里考虑等离子体中的氢原子和类氢离子。提出的方法侧重于谱线形状的计算。给出了计算Hnα (Δn=1)和Hnβ (Δn=2)谱线通用离子谱线的快速简便方法。给出了Hnα和Hnβ跃迁的通用偶极矩阵元素公式。提出了一种利用通用偶极子矩阵元公式计算外加磁场作用下光谱线形状的快速方法。这种方法解释了多普勒和斯塔克-塞曼展宽机制。通过频率波动模型处理离子动力学效应。讨论了该模型的精度。并将该方法与实验数据和分子动力学模拟结果进行了比较。高激发态居群的动力学方程采用抛物线形式求解。考虑了与双电子复合有关的种群源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review of Rydberg Spectral Line Formation in Plasmas
The present review is dedicated to the problem of an array of transitions between highly-excited atomic levels. Hydrogen atoms and hydrogen-like ions in plasmas are considered here. The presented methods focus on calculation of spectral line shapes. Fast and simple methods of universal ionic profile calculation for the Hnα (Δn=1) and Hnβ (Δn=2) spectral lines are demonstrated. The universal dipole matrix elements formulas for the Hnα and Hnβ transitions are presented. A fast method for spectral line shape calculations in the presence of an external magnetic field using the formulas for universal dipole matrix elements is proposed. This approach accounts for the Doppler and Stark–Zeeman broadening mechanisms. Ion dynamics effects are treated via the frequency fluctuation model. The accuracy of the presented model is discussed. A comparison of this approach with experimental data and the results of molecular dynamics simulation is demonstrated. The kinetics equation for the populations of highly-excited ionic states is solved in the parabolic representation. The population source associated with dielectronic recombination is considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atoms
Atoms Physics and Astronomy-Nuclear and High Energy Physics
CiteScore
2.70
自引率
22.20%
发文量
128
审稿时长
8 weeks
期刊介绍: Atoms (ISSN 2218-2004) is an international and cross-disciplinary scholarly journal of scientific studies related to all aspects of the atom. It publishes reviews, regular research papers, and communications; there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles. There are, in addition, unique features of this journal: -manuscripts regarding research proposals and research ideas will be particularly welcomed. -computed data, program listings, and files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Scopes: -experimental and theoretical atomic, molecular, and nuclear physics, chemical physics -the study of atoms, molecules, nuclei and their interactions and constituents (protons, neutrons, and electrons) -quantum theory, applications and foundations -microparticles, clusters -exotic systems (muons, quarks, anti-matter) -atomic, molecular, and nuclear spectroscopy and collisions -nuclear energy (fusion and fission), radioactive decay -nuclear magnetic resonance (NMR) and electron spin resonance (ESR), hyperfine interactions -orbitals, valence and bonding behavior -atomic and molecular properties (energy levels, radiative properties, magnetic moments, collisional data) and photon interactions
期刊最新文献
A Study of the Atomic Processes of Highly Charged Ions Embedded in Dense Plasma Reactions of CH2OO, CH3CHOO, and (CH3)2COO with Methane through the Formation of Intermediate Complex Photon and Particle Impact Spectroscopy and Dynamics of Atoms, Molecules and Clusters On Rayleigh–Taylor Dynamics Modeling Femtosecond Reduction of Atomic Scattering Factors in X-ray-Excited Silicon with Boltzmann Kinetic Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1