高地岛屿:评估一种水生高地地方病种群间的基因流动

IF 2 3区 生物学 Q3 EVOLUTIONARY BIOLOGY Biological Journal of the Linnean Society Pub Date : 2023-10-17 DOI:10.1093/biolinnean/blad137
Kyle R Piller, Elyse Parker, Caleb D McMahan, Diego J Elías, Wilfredo A Matamoros, Ernesto Velázquez Velázquez
{"title":"高地岛屿:评估一种水生高地地方病种群间的基因流动","authors":"Kyle R Piller, Elyse Parker, Caleb D McMahan, Diego J Elías, Wilfredo A Matamoros, Ernesto Velázquez Velázquez","doi":"10.1093/biolinnean/blad137","DOIUrl":null,"url":null,"abstract":"Abstract A variety of hierarchical gene flow models have been proposed to explain the distribution of genetic variation in aquatic environments. These models, including the Stream Hierarchy (SH), Death Valley (DV), Headwater (HW), and Widespread Gene flow (WG) models, provide testable hypotheses that focus on the degree of within-basin or within-stream network connectivity and an organism’s dispersal abilities. We tested these models using Tlaloc hildebrandi (Profundulidae, Cyprinodontiformes), a freshwater fish endemic to the highlands of the Grijalva and Usumacinta River basins in southern Mexico. Data from ultraconserved elements (UCEs) showed that although T. hildebrandi was recovered as monophyletic, the sub-basins were not. We generated single nucleotide polymorphisms from the UCEs to analyse the data in a population genetic framework. These results differed between analyses such that two (STRUCTURE analysis) or three (DAPC analysis) genetic groupings were recovered. Overall, the results of this study provide support for the SH model. Some individuals from the Jataté sub-basin, however, conformed to the HW model, due to historical connections among headwater streams and rivers of the Jataté and Amarillo–Chenalhó clades/clusters. The greatest degree of gene flow has occurred from the Grijlava to the Usumacinta basins, two geographically proximate basins that have been hypothesized to have had previous connections.","PeriodicalId":55373,"journal":{"name":"Biological Journal of the Linnean Society","volume":"1 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highland islands: assessing gene flow among populations of an aquatic highland endemic\",\"authors\":\"Kyle R Piller, Elyse Parker, Caleb D McMahan, Diego J Elías, Wilfredo A Matamoros, Ernesto Velázquez Velázquez\",\"doi\":\"10.1093/biolinnean/blad137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A variety of hierarchical gene flow models have been proposed to explain the distribution of genetic variation in aquatic environments. These models, including the Stream Hierarchy (SH), Death Valley (DV), Headwater (HW), and Widespread Gene flow (WG) models, provide testable hypotheses that focus on the degree of within-basin or within-stream network connectivity and an organism’s dispersal abilities. We tested these models using Tlaloc hildebrandi (Profundulidae, Cyprinodontiformes), a freshwater fish endemic to the highlands of the Grijalva and Usumacinta River basins in southern Mexico. Data from ultraconserved elements (UCEs) showed that although T. hildebrandi was recovered as monophyletic, the sub-basins were not. We generated single nucleotide polymorphisms from the UCEs to analyse the data in a population genetic framework. These results differed between analyses such that two (STRUCTURE analysis) or three (DAPC analysis) genetic groupings were recovered. Overall, the results of this study provide support for the SH model. Some individuals from the Jataté sub-basin, however, conformed to the HW model, due to historical connections among headwater streams and rivers of the Jataté and Amarillo–Chenalhó clades/clusters. The greatest degree of gene flow has occurred from the Grijlava to the Usumacinta basins, two geographically proximate basins that have been hypothesized to have had previous connections.\",\"PeriodicalId\":55373,\"journal\":{\"name\":\"Biological Journal of the Linnean Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Journal of the Linnean Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/biolinnean/blad137\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Journal of the Linnean Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biolinnean/blad137","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们提出了多种层次基因流模型来解释水生环境中遗传变异的分布。这些模型,包括河流等级(SH)、死亡谷(DV)、源头(HW)和广泛基因流(WG)模型,提供了可测试的假设,重点关注流域内或河流内网络连接的程度以及生物体的扩散能力。我们使用墨西哥南部Grijalva和Usumacinta河流域高地特有的淡水鱼Tlaloc hildebrandi (proundulidae, Cyprinodontiformes)来测试这些模型。超保守元素(UCEs)数据表明,虽然hildebrandi被恢复为单系,但子盆地不是。我们从UCEs中生成单核苷酸多态性,以在群体遗传框架中分析数据。这些结果在分析之间存在差异,例如恢复了两个(结构分析)或三个(DAPC分析)遗传分组。总的来说,本研究的结果为SH模型提供了支持。然而,由于jatat和Amarillo-Chenalhó枝/群的源头溪流和河流之间的历史联系,一些来自jatat子盆地的个体符合HW模式。最大程度的基因流动发生在Grijlava盆地到Usumacinta盆地,这两个地理上接近的盆地被假设有先前的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Highland islands: assessing gene flow among populations of an aquatic highland endemic
Abstract A variety of hierarchical gene flow models have been proposed to explain the distribution of genetic variation in aquatic environments. These models, including the Stream Hierarchy (SH), Death Valley (DV), Headwater (HW), and Widespread Gene flow (WG) models, provide testable hypotheses that focus on the degree of within-basin or within-stream network connectivity and an organism’s dispersal abilities. We tested these models using Tlaloc hildebrandi (Profundulidae, Cyprinodontiformes), a freshwater fish endemic to the highlands of the Grijalva and Usumacinta River basins in southern Mexico. Data from ultraconserved elements (UCEs) showed that although T. hildebrandi was recovered as monophyletic, the sub-basins were not. We generated single nucleotide polymorphisms from the UCEs to analyse the data in a population genetic framework. These results differed between analyses such that two (STRUCTURE analysis) or three (DAPC analysis) genetic groupings were recovered. Overall, the results of this study provide support for the SH model. Some individuals from the Jataté sub-basin, however, conformed to the HW model, due to historical connections among headwater streams and rivers of the Jataté and Amarillo–Chenalhó clades/clusters. The greatest degree of gene flow has occurred from the Grijlava to the Usumacinta basins, two geographically proximate basins that have been hypothesized to have had previous connections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
10.50%
发文量
140
审稿时长
3-6 weeks
期刊介绍: The Biological Journal of the Linnean Society is a direct descendant of the oldest biological journal in the world, which published the epoch-making papers on evolution by Darwin and Wallace. The Journal specializes in evolution in the broadest sense and covers all taxonomic groups in all five kingdoms. It covers all the methods used to study evolution, whether whole-organism or molecular, practical or theoretical.d.
期刊最新文献
Are cows pickier than goats? Linnaeus’s innovative large-scale feeding experiment Hydrographic basins dictate the genetic structure of the paradoxical frog Pseudis bolbodactyla (Anura: Hylidae) in the rivers of Central Brazil The mechanics of male courtship display behaviour in the Ptiloris riflebirds (Aves: Paradisaeidae) Mitogenomics of a declining species, the Rio Grande silvery minnow (Hybognathus amarus), with boom–bust population dynamics Once upon a time: exploring the biogeographic history of the largest endemic lizard family in the Neotropics (Squamata: Gymnophthalmidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1