山梨醇和柠檬酸(SorCA)改性木材的生物耐久性和木-水相互作用

IF 2.2 3区 农林科学 Q2 FORESTRY Journal of Wood Science Pub Date : 2023-10-17 DOI:10.1186/s10086-023-02108-y
Katarzyna Kurkowiak, Lukas Emmerich, Holger Militz
{"title":"山梨醇和柠檬酸(SorCA)改性木材的生物耐久性和木-水相互作用","authors":"Katarzyna Kurkowiak, Lukas Emmerich, Holger Militz","doi":"10.1186/s10086-023-02108-y","DOIUrl":null,"url":null,"abstract":"Abstract This study aimed to investigate the relationship between moisture dynamics of sorbitol and citric acid (SorCA) modified wood and its biological durability. Specifically, the research aimed to determine the chemical loading needed for effective protection against wood-destroying basidiomycetes, while also improving the understanding of the moisture behavior of SorCA-modified wood. The SorCA modification process is relatively new, and thus, there is limited knowledge on its moisture behavior and its impact on biological durability. The research focused on Scots pine sapwood ( Pinus sylvestris L.) and used the EN 113-2 standard to investigate its durability against wood-destroying basidiomycetes. Moisture behavior was analyzed through short-term water uptake and release tests, capillary water uptake and CEN/TS 16818. Results showed a significant reduction in liquid and water vapor uptake, likely due to a reduction in the maximum moisture capacity within the wood cell wall. The study confirmed that high chemical loadings (i.e., weight percent gain, WPG) are necessary for adequate decay protection.","PeriodicalId":17664,"journal":{"name":"Journal of Wood Science","volume":"78 6 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological durability and wood–water interactions of sorbitol and citric acid (SorCA) modified wood\",\"authors\":\"Katarzyna Kurkowiak, Lukas Emmerich, Holger Militz\",\"doi\":\"10.1186/s10086-023-02108-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study aimed to investigate the relationship between moisture dynamics of sorbitol and citric acid (SorCA) modified wood and its biological durability. Specifically, the research aimed to determine the chemical loading needed for effective protection against wood-destroying basidiomycetes, while also improving the understanding of the moisture behavior of SorCA-modified wood. The SorCA modification process is relatively new, and thus, there is limited knowledge on its moisture behavior and its impact on biological durability. The research focused on Scots pine sapwood ( Pinus sylvestris L.) and used the EN 113-2 standard to investigate its durability against wood-destroying basidiomycetes. Moisture behavior was analyzed through short-term water uptake and release tests, capillary water uptake and CEN/TS 16818. Results showed a significant reduction in liquid and water vapor uptake, likely due to a reduction in the maximum moisture capacity within the wood cell wall. The study confirmed that high chemical loadings (i.e., weight percent gain, WPG) are necessary for adequate decay protection.\",\"PeriodicalId\":17664,\"journal\":{\"name\":\"Journal of Wood Science\",\"volume\":\"78 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Wood Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s10086-023-02108-y\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wood Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10086-023-02108-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究旨在探讨山梨糖醇和柠檬酸改性木材(SorCA)的水分动态与其生物耐久性的关系。具体来说,该研究旨在确定有效防止破坏木材的担子菌所需的化学负荷,同时也提高了对sorca改性木材水分行为的理解。SorCA改性工艺相对较新,因此,对其水分行为及其对生物耐久性的影响的了解有限。本研究以苏格兰松边材(Pinus sylvestris L.)为研究对象,采用en113 -2标准考察其对破坏木材的担子菌的耐久性。通过短期吸水和释放试验、毛细吸水和CEN/TS 16818测试分析了水分行为。结果表明,液体和水蒸气的吸收显著减少,可能是由于木材细胞壁内最大水分容量的减少。该研究证实,高化学负荷(即增重百分比,WPG)对于充分的防腐是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biological durability and wood–water interactions of sorbitol and citric acid (SorCA) modified wood
Abstract This study aimed to investigate the relationship between moisture dynamics of sorbitol and citric acid (SorCA) modified wood and its biological durability. Specifically, the research aimed to determine the chemical loading needed for effective protection against wood-destroying basidiomycetes, while also improving the understanding of the moisture behavior of SorCA-modified wood. The SorCA modification process is relatively new, and thus, there is limited knowledge on its moisture behavior and its impact on biological durability. The research focused on Scots pine sapwood ( Pinus sylvestris L.) and used the EN 113-2 standard to investigate its durability against wood-destroying basidiomycetes. Moisture behavior was analyzed through short-term water uptake and release tests, capillary water uptake and CEN/TS 16818. Results showed a significant reduction in liquid and water vapor uptake, likely due to a reduction in the maximum moisture capacity within the wood cell wall. The study confirmed that high chemical loadings (i.e., weight percent gain, WPG) are necessary for adequate decay protection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Wood Science
Journal of Wood Science 工程技术-材料科学:纸与木材
CiteScore
5.40
自引率
10.30%
发文量
57
审稿时长
6 months
期刊介绍: The Journal of Wood Science is the official journal of the Japan Wood Research Society. This journal provides an international forum for the exchange of knowledge and the discussion of current issues in wood and its utilization. The journal publishes original articles on basic and applied research dealing with the science, technology, and engineering of wood, wood components, wood and wood-based products, and wood constructions. Articles concerned with pulp and paper, fiber resources from non-woody plants, wood-inhabiting insects and fungi, wood biomass, and environmental and ecological issues in forest products are also included. In addition to original articles, the journal publishes review articles on selected topics concerning wood science and related fields. The editors welcome the submission of manuscripts from any country.
期刊最新文献
Fracture predictions in impact three-point bending test of European beech Synthesis of condensed tannin model compounds regioselectively labeled with a 13C-stable isotope Mechanical properties of branch and stem wood for two Mediterranean cultivars of olive tree Effects of moisture content on the behaviour of Scots pine heartwood and sapwood under impact Chemical changes of polysaccharides in heat-treated European beech wood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1