{"title":"糖脂玻璃科学","authors":"Shigesaburo Ogawa","doi":"10.4052/tigg.2121.1e","DOIUrl":null,"url":null,"abstract":"Glass transition is a phenomenon in which an amorphous phase undergoes an abrupt change in its thermodynamic properties at a certain temperature referred to as that material’s glass transition temperature (Tg). Recently, studies have been conducted on the glass transition of glycolipids, including carbohydrate-based surfactants, which have covalently linked sugar and hydrocarbon moieties. These are reported to form various phases such as the glassy lamellar gel (Lβ) phases, glassy thermotropic liquid crystal (LC) phases like the fluid lamellar (Lα), hexagonal columnar (Colh) and cubic LC phases, and glassy lyotropic LC phases such as Lα and cubic LC phases. In addition, the relationships between the structure of glycolipids, their LC phases, and Tg have been reported. Furthermore, the phase transition between Lα and Lβ phases in the glassy state and the relaxation behavior of structural and thermodynamic parameters at glass transition have been investigated. These results reveal the universality of the glass transition phenomenon, as well as some properties specific to the glass transition of glycolipids. Several promising applications have been proposed for pharmaceutical fields. Future research is expected to shed light on the glass transition of glycolipids and glycans in biomembranes and their contribution to the expression of functions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Glass Science of Glycolipids\",\"authors\":\"Shigesaburo Ogawa\",\"doi\":\"10.4052/tigg.2121.1e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glass transition is a phenomenon in which an amorphous phase undergoes an abrupt change in its thermodynamic properties at a certain temperature referred to as that material’s glass transition temperature (Tg). Recently, studies have been conducted on the glass transition of glycolipids, including carbohydrate-based surfactants, which have covalently linked sugar and hydrocarbon moieties. These are reported to form various phases such as the glassy lamellar gel (Lβ) phases, glassy thermotropic liquid crystal (LC) phases like the fluid lamellar (Lα), hexagonal columnar (Colh) and cubic LC phases, and glassy lyotropic LC phases such as Lα and cubic LC phases. In addition, the relationships between the structure of glycolipids, their LC phases, and Tg have been reported. Furthermore, the phase transition between Lα and Lβ phases in the glassy state and the relaxation behavior of structural and thermodynamic parameters at glass transition have been investigated. These results reveal the universality of the glass transition phenomenon, as well as some properties specific to the glass transition of glycolipids. Several promising applications have been proposed for pharmaceutical fields. Future research is expected to shed light on the glass transition of glycolipids and glycans in biomembranes and their contribution to the expression of functions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4052/tigg.2121.1e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4052/tigg.2121.1e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Glass transition is a phenomenon in which an amorphous phase undergoes an abrupt change in its thermodynamic properties at a certain temperature referred to as that material’s glass transition temperature (Tg). Recently, studies have been conducted on the glass transition of glycolipids, including carbohydrate-based surfactants, which have covalently linked sugar and hydrocarbon moieties. These are reported to form various phases such as the glassy lamellar gel (Lβ) phases, glassy thermotropic liquid crystal (LC) phases like the fluid lamellar (Lα), hexagonal columnar (Colh) and cubic LC phases, and glassy lyotropic LC phases such as Lα and cubic LC phases. In addition, the relationships between the structure of glycolipids, their LC phases, and Tg have been reported. Furthermore, the phase transition between Lα and Lβ phases in the glassy state and the relaxation behavior of structural and thermodynamic parameters at glass transition have been investigated. These results reveal the universality of the glass transition phenomenon, as well as some properties specific to the glass transition of glycolipids. Several promising applications have been proposed for pharmaceutical fields. Future research is expected to shed light on the glass transition of glycolipids and glycans in biomembranes and their contribution to the expression of functions.