双功能TiO2 -纳米纤维增强凝胶聚合物电解质用于高性能锂金属电池

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-10-20 DOI:10.1016/j.jechem.2023.09.049
Yixin Wu, Zhen Chen, Yang Wang, Yu Li, Chunxing Zhang, Yihui Zhu, Ziyu Yue, Xin Liu, Minghua Chen
{"title":"双功能TiO2 -纳米纤维增强凝胶聚合物电解质用于高性能锂金属电池","authors":"Yixin Wu,&nbsp;Zhen Chen,&nbsp;Yang Wang,&nbsp;Yu Li,&nbsp;Chunxing Zhang,&nbsp;Yihui Zhu,&nbsp;Ziyu Yue,&nbsp;Xin Liu,&nbsp;Minghua Chen","doi":"10.1016/j.jechem.2023.09.049","DOIUrl":null,"url":null,"abstract":"<div><p>Exploration of advanced gel polymer electrolytes (GPEs) represents a viable strategy for mitigating dendritic lithium (Li) growth, which is crucial in ensuring the safe operation of high energy density Li metal batteries (LMBs). Despite this, the application of GPEs is still hindered by inadequate ionic conductivity, low Li<sup>+</sup> transference number, and subpar physicochemical properties. Herein, TiO<sub>2−</sub><em><sub>x</sub></em> nanofibers (NF) with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs. Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of TiO<sub>2−</sub><em><sub>x</sub></em> NF accelerate the dissociation of LiPF<sub>6</sub>, promote the rapid transfer of free Li<sup>+</sup>, and influence the formation of LiF-enriched solid electrolyte interphase. Consequently, the composite GPEs demonstrate enhanced ionic conductivity (1.90 mS cm<sup>−1</sup> at room temperature), higher lithium-ion transference number (0.70), wider electrochemical stability window (5.50 V), superior mechanical strength, excellent thermal stability (210 °C), and improved compatibility with lithium, resulting in superior cycling stability and rate performance in both Li||Li, Li||LiFePO<sub>4</sub>, and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cells. Overall, the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated, thus, it is anticipated to shed new light on designing high-performance GPEs LMBs.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 437-448"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095495623005764/pdfft?md5=d3e0e91f5cdc1931350e1f2d51bc7053&pid=1-s2.0-S2095495623005764-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bifunctional TiO2−x nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries\",\"authors\":\"Yixin Wu,&nbsp;Zhen Chen,&nbsp;Yang Wang,&nbsp;Yu Li,&nbsp;Chunxing Zhang,&nbsp;Yihui Zhu,&nbsp;Ziyu Yue,&nbsp;Xin Liu,&nbsp;Minghua Chen\",\"doi\":\"10.1016/j.jechem.2023.09.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploration of advanced gel polymer electrolytes (GPEs) represents a viable strategy for mitigating dendritic lithium (Li) growth, which is crucial in ensuring the safe operation of high energy density Li metal batteries (LMBs). Despite this, the application of GPEs is still hindered by inadequate ionic conductivity, low Li<sup>+</sup> transference number, and subpar physicochemical properties. Herein, TiO<sub>2−</sub><em><sub>x</sub></em> nanofibers (NF) with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs. Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of TiO<sub>2−</sub><em><sub>x</sub></em> NF accelerate the dissociation of LiPF<sub>6</sub>, promote the rapid transfer of free Li<sup>+</sup>, and influence the formation of LiF-enriched solid electrolyte interphase. Consequently, the composite GPEs demonstrate enhanced ionic conductivity (1.90 mS cm<sup>−1</sup> at room temperature), higher lithium-ion transference number (0.70), wider electrochemical stability window (5.50 V), superior mechanical strength, excellent thermal stability (210 °C), and improved compatibility with lithium, resulting in superior cycling stability and rate performance in both Li||Li, Li||LiFePO<sub>4</sub>, and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cells. Overall, the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated, thus, it is anticipated to shed new light on designing high-performance GPEs LMBs.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 437-448\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005764/pdfft?md5=d3e0e91f5cdc1931350e1f2d51bc7053&pid=1-s2.0-S2095495623005764-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005764\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

探索先进的凝胶聚合物电解质(gpe)是减缓枝晶锂(Li)生长的可行策略,这对于确保高能量密度锂金属电池(lmb)的安全运行至关重要。尽管如此,gpe的应用仍然受到离子电导率不足、Li+转移数低和物理化学性质欠佳的阻碍。本文采用一步法合成了含氧空位缺陷的TiO2−x纳米纤维(NF)作为无机填料,以提高复合GPEs的热/机械/离子输运性能。各种表征和理论计算表明,TiO2−x NF表面的氧空位加速了LiPF6的解离,促进了游离Li+的快速转移,并影响了富lif固体电解质界面相的形成。结果表明,复合gpe具有更高的离子电导率(室温下为1.90 mS cm−1),更高的锂离子转移数(0.70),更宽的电化学稳定窗口(5.50 V),优异的机械强度,优异的热稳定性(210℃),以及与锂的相容性,从而在Li||Li |LiFePO4, Li||LiNi0.8Co0.1Mn0.1O2电池中具有优异的循环稳定性和倍率性能。综上所述,本文全面研究了纳米纤维形态和填料富氧空位结构对复合GPEs电化学性能的协同影响,有望为高性能GPEs lmb的设计提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bifunctional TiO2−x nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries

Exploration of advanced gel polymer electrolytes (GPEs) represents a viable strategy for mitigating dendritic lithium (Li) growth, which is crucial in ensuring the safe operation of high energy density Li metal batteries (LMBs). Despite this, the application of GPEs is still hindered by inadequate ionic conductivity, low Li+ transference number, and subpar physicochemical properties. Herein, TiO2−x nanofibers (NF) with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs. Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of TiO2−x NF accelerate the dissociation of LiPF6, promote the rapid transfer of free Li+, and influence the formation of LiF-enriched solid electrolyte interphase. Consequently, the composite GPEs demonstrate enhanced ionic conductivity (1.90 mS cm−1 at room temperature), higher lithium-ion transference number (0.70), wider electrochemical stability window (5.50 V), superior mechanical strength, excellent thermal stability (210 °C), and improved compatibility with lithium, resulting in superior cycling stability and rate performance in both Li||Li, Li||LiFePO4, and Li||LiNi0.8Co0.1Mn0.1O2 cells. Overall, the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated, thus, it is anticipated to shed new light on designing high-performance GPEs LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1