{"title":"双功能TiO2 -纳米纤维增强凝胶聚合物电解质用于高性能锂金属电池","authors":"Yixin Wu, Zhen Chen, Yang Wang, Yu Li, Chunxing Zhang, Yihui Zhu, Ziyu Yue, Xin Liu, Minghua Chen","doi":"10.1016/j.jechem.2023.09.049","DOIUrl":null,"url":null,"abstract":"<div><p>Exploration of advanced gel polymer electrolytes (GPEs) represents a viable strategy for mitigating dendritic lithium (Li) growth, which is crucial in ensuring the safe operation of high energy density Li metal batteries (LMBs). Despite this, the application of GPEs is still hindered by inadequate ionic conductivity, low Li<sup>+</sup> transference number, and subpar physicochemical properties. Herein, TiO<sub>2−</sub><em><sub>x</sub></em> nanofibers (NF) with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs. Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of TiO<sub>2−</sub><em><sub>x</sub></em> NF accelerate the dissociation of LiPF<sub>6</sub>, promote the rapid transfer of free Li<sup>+</sup>, and influence the formation of LiF-enriched solid electrolyte interphase. Consequently, the composite GPEs demonstrate enhanced ionic conductivity (1.90 mS cm<sup>−1</sup> at room temperature), higher lithium-ion transference number (0.70), wider electrochemical stability window (5.50 V), superior mechanical strength, excellent thermal stability (210 °C), and improved compatibility with lithium, resulting in superior cycling stability and rate performance in both Li||Li, Li||LiFePO<sub>4</sub>, and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cells. Overall, the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated, thus, it is anticipated to shed new light on designing high-performance GPEs LMBs.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 437-448"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095495623005764/pdfft?md5=d3e0e91f5cdc1931350e1f2d51bc7053&pid=1-s2.0-S2095495623005764-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bifunctional TiO2−x nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries\",\"authors\":\"Yixin Wu, Zhen Chen, Yang Wang, Yu Li, Chunxing Zhang, Yihui Zhu, Ziyu Yue, Xin Liu, Minghua Chen\",\"doi\":\"10.1016/j.jechem.2023.09.049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploration of advanced gel polymer electrolytes (GPEs) represents a viable strategy for mitigating dendritic lithium (Li) growth, which is crucial in ensuring the safe operation of high energy density Li metal batteries (LMBs). Despite this, the application of GPEs is still hindered by inadequate ionic conductivity, low Li<sup>+</sup> transference number, and subpar physicochemical properties. Herein, TiO<sub>2−</sub><em><sub>x</sub></em> nanofibers (NF) with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs. Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of TiO<sub>2−</sub><em><sub>x</sub></em> NF accelerate the dissociation of LiPF<sub>6</sub>, promote the rapid transfer of free Li<sup>+</sup>, and influence the formation of LiF-enriched solid electrolyte interphase. Consequently, the composite GPEs demonstrate enhanced ionic conductivity (1.90 mS cm<sup>−1</sup> at room temperature), higher lithium-ion transference number (0.70), wider electrochemical stability window (5.50 V), superior mechanical strength, excellent thermal stability (210 °C), and improved compatibility with lithium, resulting in superior cycling stability and rate performance in both Li||Li, Li||LiFePO<sub>4</sub>, and Li||LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> cells. Overall, the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated, thus, it is anticipated to shed new light on designing high-performance GPEs LMBs.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 437-448\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005764/pdfft?md5=d3e0e91f5cdc1931350e1f2d51bc7053&pid=1-s2.0-S2095495623005764-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005764\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005764","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
探索先进的凝胶聚合物电解质(gpe)是减缓枝晶锂(Li)生长的可行策略,这对于确保高能量密度锂金属电池(lmb)的安全运行至关重要。尽管如此,gpe的应用仍然受到离子电导率不足、Li+转移数低和物理化学性质欠佳的阻碍。本文采用一步法合成了含氧空位缺陷的TiO2−x纳米纤维(NF)作为无机填料,以提高复合GPEs的热/机械/离子输运性能。各种表征和理论计算表明,TiO2−x NF表面的氧空位加速了LiPF6的解离,促进了游离Li+的快速转移,并影响了富lif固体电解质界面相的形成。结果表明,复合gpe具有更高的离子电导率(室温下为1.90 mS cm−1),更高的锂离子转移数(0.70),更宽的电化学稳定窗口(5.50 V),优异的机械强度,优异的热稳定性(210℃),以及与锂的相容性,从而在Li||Li |LiFePO4, Li||LiNi0.8Co0.1Mn0.1O2电池中具有优异的循环稳定性和倍率性能。综上所述,本文全面研究了纳米纤维形态和填料富氧空位结构对复合GPEs电化学性能的协同影响,有望为高性能GPEs lmb的设计提供新的思路。
Bifunctional TiO2−x nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries
Exploration of advanced gel polymer electrolytes (GPEs) represents a viable strategy for mitigating dendritic lithium (Li) growth, which is crucial in ensuring the safe operation of high energy density Li metal batteries (LMBs). Despite this, the application of GPEs is still hindered by inadequate ionic conductivity, low Li+ transference number, and subpar physicochemical properties. Herein, TiO2−x nanofibers (NF) with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs. Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of TiO2−x NF accelerate the dissociation of LiPF6, promote the rapid transfer of free Li+, and influence the formation of LiF-enriched solid electrolyte interphase. Consequently, the composite GPEs demonstrate enhanced ionic conductivity (1.90 mS cm−1 at room temperature), higher lithium-ion transference number (0.70), wider electrochemical stability window (5.50 V), superior mechanical strength, excellent thermal stability (210 °C), and improved compatibility with lithium, resulting in superior cycling stability and rate performance in both Li||Li, Li||LiFePO4, and Li||LiNi0.8Co0.1Mn0.1O2 cells. Overall, the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated, thus, it is anticipated to shed new light on designing high-performance GPEs LMBs.