{"title":"含有残留奥氏体的中Mn复合组织钢的高速变形特性","authors":"Yoshitaka Okitsu, Tomohiko Hojo, Satoshi Morooka, Goro Miyamoto","doi":"10.2355/tetsutohagane.tetsu-2023-065","DOIUrl":null,"url":null,"abstract":"We investigated the dynamic tensile properties of 4, 5, 6-mass%-Mn-containing low carbon steels with multi-phase microstructures containing retained austenite. The five materials used were classified into two groups. The first group of materials, with around 10% of retained austenite, showed normal strain rete dependence of yield strength (YS) and tensile strength (TS) as in conventional high strength steels. The second group of materials, containing 25-36 % of retained austenite and exhibiting Lüders elongation, showed also normal strain rate dependence of YS and flow stress at Lüders deformation, but TS varied in a complex manner. Among the second group, in the 4 Mn steel, TS was nearly constant at strain rates below 1 s-1 and increased slightly at higher strain rates. In the 5 and 6 Mn steels, TS once decreased up to the strain rate of 1 or 10 s-1, and then began to increase at higher strain rates. These behaviors were discussed in terms of temperature rise during plastic deformation and thermal stability of retained austenite. In the 4 Mn steel with relatively unstable retained austenite, almost all the austenite transforms regardless of strain rate. In the 5 and 6 Mn steels, where the retained austenite is moderately stable, its martensitic transformation is suppressed due to temperature rise, resulting in the decrease in TS at relatively low strain rates. At higher strain rates, the increase in flow stress prevails and TS begins to increase.","PeriodicalId":22340,"journal":{"name":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","volume":"26 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"残留オーステナイトを含有する中Mn複合組織鋼の高速変形特性\",\"authors\":\"Yoshitaka Okitsu, Tomohiko Hojo, Satoshi Morooka, Goro Miyamoto\",\"doi\":\"10.2355/tetsutohagane.tetsu-2023-065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigated the dynamic tensile properties of 4, 5, 6-mass%-Mn-containing low carbon steels with multi-phase microstructures containing retained austenite. The five materials used were classified into two groups. The first group of materials, with around 10% of retained austenite, showed normal strain rete dependence of yield strength (YS) and tensile strength (TS) as in conventional high strength steels. The second group of materials, containing 25-36 % of retained austenite and exhibiting Lüders elongation, showed also normal strain rate dependence of YS and flow stress at Lüders deformation, but TS varied in a complex manner. Among the second group, in the 4 Mn steel, TS was nearly constant at strain rates below 1 s-1 and increased slightly at higher strain rates. In the 5 and 6 Mn steels, TS once decreased up to the strain rate of 1 or 10 s-1, and then began to increase at higher strain rates. These behaviors were discussed in terms of temperature rise during plastic deformation and thermal stability of retained austenite. In the 4 Mn steel with relatively unstable retained austenite, almost all the austenite transforms regardless of strain rate. In the 5 and 6 Mn steels, where the retained austenite is moderately stable, its martensitic transformation is suppressed due to temperature rise, resulting in the decrease in TS at relatively low strain rates. At higher strain rates, the increase in flow stress prevails and TS begins to increase.\",\"PeriodicalId\":22340,\"journal\":{\"name\":\"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2355/tetsutohagane.tetsu-2023-065\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetsu To Hagane-journal of The Iron and Steel Institute of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2355/tetsutohagane.tetsu-2023-065","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
We investigated the dynamic tensile properties of 4, 5, 6-mass%-Mn-containing low carbon steels with multi-phase microstructures containing retained austenite. The five materials used were classified into two groups. The first group of materials, with around 10% of retained austenite, showed normal strain rete dependence of yield strength (YS) and tensile strength (TS) as in conventional high strength steels. The second group of materials, containing 25-36 % of retained austenite and exhibiting Lüders elongation, showed also normal strain rate dependence of YS and flow stress at Lüders deformation, but TS varied in a complex manner. Among the second group, in the 4 Mn steel, TS was nearly constant at strain rates below 1 s-1 and increased slightly at higher strain rates. In the 5 and 6 Mn steels, TS once decreased up to the strain rate of 1 or 10 s-1, and then began to increase at higher strain rates. These behaviors were discussed in terms of temperature rise during plastic deformation and thermal stability of retained austenite. In the 4 Mn steel with relatively unstable retained austenite, almost all the austenite transforms regardless of strain rate. In the 5 and 6 Mn steels, where the retained austenite is moderately stable, its martensitic transformation is suppressed due to temperature rise, resulting in the decrease in TS at relatively low strain rates. At higher strain rates, the increase in flow stress prevails and TS begins to increase.
期刊介绍:
The journal ISIJ International first appeared in 1961 under the title Tetsu-to-Hagané Overseas. The title was changed in 1966 to Transactions of The Iron and Steel Institute of Japan and again in 1989 to the current ISIJ International.
The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.
Classification
I Fundamentals of High Temperature Processes
II Ironmaking
III Steelmaking
IV Casting and Solidification
V Instrumentation, Control, and System Engineering
VI Chemical and Physical Analysis
VII Forming Processing and Thermomechanical Treatment
VIII Welding and Joining
IX Surface Treatment and Corrosion
X Transformations and Microstructures
XI Mechanical Properties
XII Physical Properties
XIII New Materials and Processes
XIV Social and Environmental Engineering.