高性能超级电容器的核壳电极材料Co9S8@Ni(OH)2

IF 0.9 4区 材料科学 Science of Advanced Materials Pub Date : 2023-10-01 DOI:10.1166/sam.2023.4556
Jian Wang, Yucai Li, Shiwei Song
{"title":"高性能超级电容器的核壳电极材料Co9S8@Ni(OH)2","authors":"Jian Wang, Yucai Li, Shiwei Song","doi":"10.1166/sam.2023.4556","DOIUrl":null,"url":null,"abstract":"Developing electrodes with hybrid architectures holds significant importance in enhancing the efficiency of energy storage and conversion processes. In general, single-component metal oxides tend to exhibit poor operational stability and sluggish ionic-electron mobility. To address these issues, we have successfully synthesized a hybrid-structured material, Co 8 S 9 @Ni(OH) 2 , leveraging the easily modifiable characteristics of spinel-structured Co 8 S 9 . This hybrid material was prepared through a hydrothermal synthesis method. The resulting Co 8 S 9 @Ni(OH) 2 hybrid structure demonstrates an impressive specific capacitance of 1029 C g −1 at 1 A g −1 , accompanied by outstanding stability. In addition, the as-prepared samples shows a capacitance retention of 81.09% initial capacitance, indicating that the as-prepared sample possess an excellent cycle stability.","PeriodicalId":21671,"journal":{"name":"Science of Advanced Materials","volume":"121 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Core–Shell Electrode Material Co<sub>9</sub>S<sub>8</sub>@Ni(OH)<sub>2</sub> for High-Performance Supercapacitors\",\"authors\":\"Jian Wang, Yucai Li, Shiwei Song\",\"doi\":\"10.1166/sam.2023.4556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing electrodes with hybrid architectures holds significant importance in enhancing the efficiency of energy storage and conversion processes. In general, single-component metal oxides tend to exhibit poor operational stability and sluggish ionic-electron mobility. To address these issues, we have successfully synthesized a hybrid-structured material, Co 8 S 9 @Ni(OH) 2 , leveraging the easily modifiable characteristics of spinel-structured Co 8 S 9 . This hybrid material was prepared through a hydrothermal synthesis method. The resulting Co 8 S 9 @Ni(OH) 2 hybrid structure demonstrates an impressive specific capacitance of 1029 C g −1 at 1 A g −1 , accompanied by outstanding stability. In addition, the as-prepared samples shows a capacitance retention of 81.09% initial capacitance, indicating that the as-prepared sample possess an excellent cycle stability.\",\"PeriodicalId\":21671,\"journal\":{\"name\":\"Science of Advanced Materials\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Advanced Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/sam.2023.4556\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Advanced Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/sam.2023.4556","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

开发具有混合结构的电极对于提高能量存储和转换过程的效率具有重要意义。一般来说,单组分金属氧化物往往表现出较差的操作稳定性和缓慢的离子-电子迁移率。为了解决这些问题,我们成功地合成了一种混合结构材料,Co 8s9 @Ni(OH) 2,利用尖晶石结构Co 8s9易于修饰的特性。采用水热合成法制备了该杂化材料。得到的Co 8s9 @Ni(OH) 2杂化结构在1ag−1时具有1029cg−1的比电容,并具有出色的稳定性。此外,制备的样品的电容保留率为81.09%,表明制备的样品具有良好的循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Core–Shell Electrode Material Co9S8@Ni(OH)2 for High-Performance Supercapacitors
Developing electrodes with hybrid architectures holds significant importance in enhancing the efficiency of energy storage and conversion processes. In general, single-component metal oxides tend to exhibit poor operational stability and sluggish ionic-electron mobility. To address these issues, we have successfully synthesized a hybrid-structured material, Co 8 S 9 @Ni(OH) 2 , leveraging the easily modifiable characteristics of spinel-structured Co 8 S 9 . This hybrid material was prepared through a hydrothermal synthesis method. The resulting Co 8 S 9 @Ni(OH) 2 hybrid structure demonstrates an impressive specific capacitance of 1029 C g −1 at 1 A g −1 , accompanied by outstanding stability. In addition, the as-prepared samples shows a capacitance retention of 81.09% initial capacitance, indicating that the as-prepared sample possess an excellent cycle stability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science of Advanced Materials
Science of Advanced Materials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
11.10%
发文量
98
审稿时长
4.4 months
期刊最新文献
Preparation of Coal Gangue Based LSX Zeolite and Its Application for Zn2+ and Ni2+ Adsorption Single-Cell Analysis Reveals Adipose Cancer-Associated Fibroblasts Linked to Trastuzumab Resistance in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Effects of Calcitonin on Apoptosis and B-Cell Lymphoma 2 Expression in Knee Osteoarthritis Articular Chondrocytes Microstructural and Electrical Resistivity of TiN Electrode Films Prepared by Direct Current (DC) Reactive Magnetron Sputtering Effects of Recepteur D’origine Nantais/Phosphatidylinositol 3 Kinase Pathway Mediated by Polymer Biodegradable Sustained-Release Materials on Proliferation and Apoptosis of Uterine Fibroids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1