Jia-Xin Guo , Chang Gao , He Liu , Feng Jiang , Zaichun Liu , Tao Wang , Yuan Ma , Yiren Zhong , Jiarui He , Zhi Zhu , Yuping Wu , Xin-Bing Cheng
{"title":"安全锂电池的固有热响应策略","authors":"Jia-Xin Guo , Chang Gao , He Liu , Feng Jiang , Zaichun Liu , Tao Wang , Yuan Ma , Yiren Zhong , Jiarui He , Zhi Zhu , Yuping Wu , Xin-Bing Cheng","doi":"10.1016/j.jechem.2023.10.016","DOIUrl":null,"url":null,"abstract":"<div><p>Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles, which are crucial to achieving carbon neutralization. Electrolytes, separators, and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents. Responsive materials, which can respond to external stimuli or environmental change, have triggered extensive attentions recently, holding great promise in facilitating safe and smart batteries. This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies, together with the corresponding changes in electrochemical performance under external stimulus. Furthermore, the existing challenges and outlook for the design of safe batteries are presented, creating valuable insights and proposing directions for the practical implementation of safe lithium batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 519-534"},"PeriodicalIF":14.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inherent thermal-responsive strategies for safe lithium batteries\",\"authors\":\"Jia-Xin Guo , Chang Gao , He Liu , Feng Jiang , Zaichun Liu , Tao Wang , Yuan Ma , Yiren Zhong , Jiarui He , Zhi Zhu , Yuping Wu , Xin-Bing Cheng\",\"doi\":\"10.1016/j.jechem.2023.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles, which are crucial to achieving carbon neutralization. Electrolytes, separators, and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents. Responsive materials, which can respond to external stimuli or environmental change, have triggered extensive attentions recently, holding great promise in facilitating safe and smart batteries. This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies, together with the corresponding changes in electrochemical performance under external stimulus. Furthermore, the existing challenges and outlook for the design of safe batteries are presented, creating valuable insights and proposing directions for the practical implementation of safe lithium batteries.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 519-534\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005831\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005831","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Inherent thermal-responsive strategies for safe lithium batteries
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles, which are crucial to achieving carbon neutralization. Electrolytes, separators, and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents. Responsive materials, which can respond to external stimuli or environmental change, have triggered extensive attentions recently, holding great promise in facilitating safe and smart batteries. This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies, together with the corresponding changes in electrochemical performance under external stimulus. Furthermore, the existing challenges and outlook for the design of safe batteries are presented, creating valuable insights and proposing directions for the practical implementation of safe lithium batteries.