3d打印多孔氧化铝膜涂覆亲水性改性二氧化钛颗粒大通量油/水分离

IF 1.3 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Advances in Applied Ceramics Pub Date : 2023-10-12 DOI:10.1080/17436753.2023.2265203
Hao Li, Hui Mei, Zhipeng Jin, Longkai Pan, Laifei Cheng, Litong Zhang
{"title":"3d打印多孔氧化铝膜涂覆亲水性改性二氧化钛颗粒大通量油/水分离","authors":"Hao Li, Hui Mei, Zhipeng Jin, Longkai Pan, Laifei Cheng, Litong Zhang","doi":"10.1080/17436753.2023.2265203","DOIUrl":null,"url":null,"abstract":"ABSTRACTA viable material to address oil pollution in water is the super wetting surface, which is accessible to realise the separation of oil and water. According to Young’s equation, hydrophobic/oleophilic materials are theoretically simple to realise and have a wide range of applications. The hydrophobic/oleophilic membrane, however, has a poor separating effect on the mixture in which the oil has a lower density than water. Hence, to optimise the oil/water separation performance, hydrophilic modified titanium dioxide particles were introduced to a novel porous superhydrophilic/oleophobic substrate fabricated by 3D printing technology in this work. The contact angle of n-hexadecane on the membrane surface was about 130°, which was an oleophobic surface. The oil/water separation efficiency of the 0.7 mm thick oleophobic membrane was over 98% and the penetration flux was up to 11,191 L m−2 h−1, indicating that the membranes prepared in this work might be used in high-flux oil/water separation applications. This study provides an efficient, simple, and reliable method for preparing oil/water separation materials with 3D printing technology, and may have broader significance among the academic and industry communities.KEYWORDS: 3D printingsuperhydrophilic/oleophobic membraneoil/water separationhydrophilic modificationporous structure AcknowledgementsWe would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and TEM.Disclosure statementNo potential conflict of interest was reported by the author(s).Declaration of competing interestThe authors declare that they have no known competing financial interests or personal relations that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was financially supported by the Fundamental Research Funds for the Central Universities [grant number 3102019PJ008 and 3102018JCC002]; National Key Research and Development Program of China [grant number 2021YFB3701500]; National Natural Science Foundation of China [grant number 52072306].","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D-printed porous Al <sub>2</sub> O <sub>3</sub> membrane coated with hydrophilic modified titanium dioxide particles for large-flux oil/water separation\",\"authors\":\"Hao Li, Hui Mei, Zhipeng Jin, Longkai Pan, Laifei Cheng, Litong Zhang\",\"doi\":\"10.1080/17436753.2023.2265203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACTA viable material to address oil pollution in water is the super wetting surface, which is accessible to realise the separation of oil and water. According to Young’s equation, hydrophobic/oleophilic materials are theoretically simple to realise and have a wide range of applications. The hydrophobic/oleophilic membrane, however, has a poor separating effect on the mixture in which the oil has a lower density than water. Hence, to optimise the oil/water separation performance, hydrophilic modified titanium dioxide particles were introduced to a novel porous superhydrophilic/oleophobic substrate fabricated by 3D printing technology in this work. The contact angle of n-hexadecane on the membrane surface was about 130°, which was an oleophobic surface. The oil/water separation efficiency of the 0.7 mm thick oleophobic membrane was over 98% and the penetration flux was up to 11,191 L m−2 h−1, indicating that the membranes prepared in this work might be used in high-flux oil/water separation applications. This study provides an efficient, simple, and reliable method for preparing oil/water separation materials with 3D printing technology, and may have broader significance among the academic and industry communities.KEYWORDS: 3D printingsuperhydrophilic/oleophobic membraneoil/water separationhydrophilic modificationporous structure AcknowledgementsWe would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and TEM.Disclosure statementNo potential conflict of interest was reported by the author(s).Declaration of competing interestThe authors declare that they have no known competing financial interests or personal relations that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was financially supported by the Fundamental Research Funds for the Central Universities [grant number 3102019PJ008 and 3102018JCC002]; National Key Research and Development Program of China [grant number 2021YFB3701500]; National Natural Science Foundation of China [grant number 52072306].\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2023.2265203\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17436753.2023.2265203","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

解决水中油类污染的可行材料是可实现油水分离的超润湿表面。根据杨氏方程,疏水/亲油材料理论上易于实现,具有广泛的应用范围。然而,疏水/亲油膜对油密度低于水的混合物分离效果较差。因此,为了优化油水分离性能,本研究将亲水改性二氧化钛颗粒引入到3D打印技术制备的新型多孔超亲水/疏油基板中。正十六烷与膜表面的接触角约为130°,为疏油表面。0.7 mm厚的疏油膜的油水分离效率可达98%以上,渗透通量可达11191 L m−2 h−1,表明所制备的膜可用于高通量油水分离。本研究为利用3D打印技术制备油水分离材料提供了一种高效、简单、可靠的方法,在学术界和工业界可能具有更广泛的意义。关键词:3D打印;超亲水/疏油膜;油水分离;亲水改性;披露声明作者未报告潜在的利益冲突。竞争利益声明作者声明,他们没有已知的竞争经济利益或个人关系,可能会影响本文所报道的工作。经费资助:中央高校基本科研业务费专项资金[批准号:3102019PJ008和3102018JCC002];国家重点研发计划项目[批准号2021YFB3701500];国家自然科学基金项目[批准号52072306]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D-printed porous Al 2 O 3 membrane coated with hydrophilic modified titanium dioxide particles for large-flux oil/water separation
ABSTRACTA viable material to address oil pollution in water is the super wetting surface, which is accessible to realise the separation of oil and water. According to Young’s equation, hydrophobic/oleophilic materials are theoretically simple to realise and have a wide range of applications. The hydrophobic/oleophilic membrane, however, has a poor separating effect on the mixture in which the oil has a lower density than water. Hence, to optimise the oil/water separation performance, hydrophilic modified titanium dioxide particles were introduced to a novel porous superhydrophilic/oleophobic substrate fabricated by 3D printing technology in this work. The contact angle of n-hexadecane on the membrane surface was about 130°, which was an oleophobic surface. The oil/water separation efficiency of the 0.7 mm thick oleophobic membrane was over 98% and the penetration flux was up to 11,191 L m−2 h−1, indicating that the membranes prepared in this work might be used in high-flux oil/water separation applications. This study provides an efficient, simple, and reliable method for preparing oil/water separation materials with 3D printing technology, and may have broader significance among the academic and industry communities.KEYWORDS: 3D printingsuperhydrophilic/oleophobic membraneoil/water separationhydrophilic modificationporous structure AcknowledgementsWe would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM and TEM.Disclosure statementNo potential conflict of interest was reported by the author(s).Declaration of competing interestThe authors declare that they have no known competing financial interests or personal relations that could have appeared to influence the work reported in this paper.Additional informationFundingThis work was financially supported by the Fundamental Research Funds for the Central Universities [grant number 3102019PJ008 and 3102018JCC002]; National Key Research and Development Program of China [grant number 2021YFB3701500]; National Natural Science Foundation of China [grant number 52072306].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Ceramics
Advances in Applied Ceramics 工程技术-材料科学:硅酸盐
CiteScore
4.40
自引率
4.50%
发文量
17
审稿时长
5.2 months
期刊介绍: Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.
期刊最新文献
Special Issue: ‘Advanced Ceramics and Coatings for Wear and Corrosion Applications’ Influences on the mechanical and physical properties of hot-press moulding alkali-activated slag (HP-FRAASC) composite with various fibers 3D-printed porous Al 2 O 3 membrane coated with hydrophilic modified titanium dioxide particles for large-flux oil/water separation Preparation of porous ceramsite from municipal sludge and its structure characteristics Gel-casting for manufacturing porous alumina ceramics with complex shapes for transpiration cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1