UVS:水下视觉SLAM -一个强大的单目视觉SLAM系统,用于终身水下操作

IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Autonomous Robots Pub Date : 2023-09-22 DOI:10.1007/s10514-023-10138-0
Marco Leonardi, Annette Stahl, Edmund Førland Brekke, Martin Ludvigsen
{"title":"UVS:水下视觉SLAM -一个强大的单目视觉SLAM系统,用于终身水下操作","authors":"Marco Leonardi,&nbsp;Annette Stahl,&nbsp;Edmund Førland Brekke,&nbsp;Martin Ludvigsen","doi":"10.1007/s10514-023-10138-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a visual simultaneous localization and mapping (VSLAM/visual SLAM) system called underwater visual SLAM (UVS) system is presented, specifically tailored for camera-only navigation in natural underwater environments. The UVS system is particularly optimized towards precision and robustness, as well as lifelong operations. We build upon Oriented features from accelerated segment test and Rotated Binary robust independent elementary features simultaneous localization and mapping (ORB-SLAM) and improve the accuracy by performing an exact search in the descriptor space during triangulation and the robustness by utilizing a unified initialization method and a motion model. In addition, we present a scale-agnostic station-keeping detection, which aims to optimize the map and poses during station-keeping, and a pruning strategy, which takes into account the point’s age and distance to the active keyframe. An exhaustive evaluation is presented to the reader, using a total of 38 in-air and underwater sequences.\n</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"47 8","pages":"1367 - 1385"},"PeriodicalIF":3.7000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10138-0.pdf","citationCount":"0","resultStr":"{\"title\":\"UVS: underwater visual SLAM—a robust monocular visual SLAM system for lifelong underwater operations\",\"authors\":\"Marco Leonardi,&nbsp;Annette Stahl,&nbsp;Edmund Førland Brekke,&nbsp;Martin Ludvigsen\",\"doi\":\"10.1007/s10514-023-10138-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a visual simultaneous localization and mapping (VSLAM/visual SLAM) system called underwater visual SLAM (UVS) system is presented, specifically tailored for camera-only navigation in natural underwater environments. The UVS system is particularly optimized towards precision and robustness, as well as lifelong operations. We build upon Oriented features from accelerated segment test and Rotated Binary robust independent elementary features simultaneous localization and mapping (ORB-SLAM) and improve the accuracy by performing an exact search in the descriptor space during triangulation and the robustness by utilizing a unified initialization method and a motion model. In addition, we present a scale-agnostic station-keeping detection, which aims to optimize the map and poses during station-keeping, and a pruning strategy, which takes into account the point’s age and distance to the active keyframe. An exhaustive evaluation is presented to the reader, using a total of 38 in-air and underwater sequences.\\n</p></div>\",\"PeriodicalId\":55409,\"journal\":{\"name\":\"Autonomous Robots\",\"volume\":\"47 8\",\"pages\":\"1367 - 1385\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10514-023-10138-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autonomous Robots\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10514-023-10138-0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Robots","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10514-023-10138-0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种专门针对自然水下环境中仅相机导航的水下视觉SLAM (UVS)系统,即视觉同时定位与制图(VSLAM/visual SLAM)系统。UVS系统特别针对精度和稳健性进行了优化,并且可以终身使用。基于加速段测试的定向特征和旋转二进制的鲁棒独立基本特征同步定位和映射(ORB-SLAM),通过在三角剖分过程中对描述子空间进行精确搜索来提高精度,并利用统一的初始化方法和运动模型来提高鲁棒性。此外,我们提出了一种尺度无关的站位保持检测方法,该方法旨在优化站位保持过程中的地图和姿态,并提出了一种考虑点的年龄和到活动关键帧的距离的修剪策略。一个详尽的评估是呈现给读者,共使用38空中和水下序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UVS: underwater visual SLAM—a robust monocular visual SLAM system for lifelong underwater operations

In this paper, a visual simultaneous localization and mapping (VSLAM/visual SLAM) system called underwater visual SLAM (UVS) system is presented, specifically tailored for camera-only navigation in natural underwater environments. The UVS system is particularly optimized towards precision and robustness, as well as lifelong operations. We build upon Oriented features from accelerated segment test and Rotated Binary robust independent elementary features simultaneous localization and mapping (ORB-SLAM) and improve the accuracy by performing an exact search in the descriptor space during triangulation and the robustness by utilizing a unified initialization method and a motion model. In addition, we present a scale-agnostic station-keeping detection, which aims to optimize the map and poses during station-keeping, and a pruning strategy, which takes into account the point’s age and distance to the active keyframe. An exhaustive evaluation is presented to the reader, using a total of 38 in-air and underwater sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Autonomous Robots
Autonomous Robots 工程技术-机器人学
CiteScore
7.90
自引率
5.70%
发文量
46
审稿时长
3 months
期刊介绍: Autonomous Robots reports on the theory and applications of robotic systems capable of some degree of self-sufficiency. It features papers that include performance data on actual robots in the real world. Coverage includes: control of autonomous robots · real-time vision · autonomous wheeled and tracked vehicles · legged vehicles · computational architectures for autonomous systems · distributed architectures for learning, control and adaptation · studies of autonomous robot systems · sensor fusion · theory of autonomous systems · terrain mapping and recognition · self-calibration and self-repair for robots · self-reproducing intelligent structures · genetic algorithms as models for robot development. The focus is on the ability to move and be self-sufficient, not on whether the system is an imitation of biology. Of course, biological models for robotic systems are of major interest to the journal since living systems are prototypes for autonomous behavior.
期刊最新文献
View: visual imitation learning with waypoints Safe and stable teleoperation of quadrotor UAVs under haptic shared autonomy Synthesizing compact behavior trees for probabilistic robotics domains Integrative biomechanics of a human–robot carrying task: implications for future collaborative work Mori-zwanzig approach for belief abstraction with application to belief space planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1