基于混合神经模糊方法的智能家居能源管理多准则决策

U. V. Anbazhagu, Manjula Sanjay Koti, V. Muthukumaran, V. Geetha, Meram Munrathnam
{"title":"基于混合神经模糊方法的智能家居能源管理多准则决策","authors":"U. V. Anbazhagu, Manjula Sanjay Koti, V. Muthukumaran, V. Geetha, Meram Munrathnam","doi":"10.13052/dgaej2156-3306.3914","DOIUrl":null,"url":null,"abstract":"The necessity for smart energy oversight solutions has arisen in response to the rising popularity of energy-efficient home automation and other energy-saving technologies. Optimizing smart home energy use using multi-criteria decision-making (MCDM) is a proven methodology. However, the procedure for making decisions and MCDM’s capacity to handle various criteria are typically limiting factors. Hybrid methods, which integrate multiple decision-making approaches like Fuzzy Logic (FL) and Modular Neural Networks (MNN), could potentially be able to circumvent these restrictions and boost energy management systems’ efficacy and precision. This investigation presents a hybrid Neuro-Fuzzy (H-NF) method for MCDM in regulating energy for smart homes by combining FL with an MNN. The suggested approach would optimize energy use in smart homes by considering several parameters, notably cost, ease of use, and environmental effects. In addition, this study aims to examine how the H-NF model fares in comparison to other methods of making important decisions in terms of several performance metrics. The suggested hybridized approach has the potential to deliver more precise and effective decision-making processes for energy management in smart homes, allowing users to optimize their energy consumption while preserving comfort and lowering environmental impact.","PeriodicalId":11205,"journal":{"name":"Distributed Generation & Alternative Energy Journal","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Criteria Decision-Making for Energy Management in Smart Homes Using Hybridized Neuro-Fuzzy Approach\",\"authors\":\"U. V. Anbazhagu, Manjula Sanjay Koti, V. Muthukumaran, V. Geetha, Meram Munrathnam\",\"doi\":\"10.13052/dgaej2156-3306.3914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The necessity for smart energy oversight solutions has arisen in response to the rising popularity of energy-efficient home automation and other energy-saving technologies. Optimizing smart home energy use using multi-criteria decision-making (MCDM) is a proven methodology. However, the procedure for making decisions and MCDM’s capacity to handle various criteria are typically limiting factors. Hybrid methods, which integrate multiple decision-making approaches like Fuzzy Logic (FL) and Modular Neural Networks (MNN), could potentially be able to circumvent these restrictions and boost energy management systems’ efficacy and precision. This investigation presents a hybrid Neuro-Fuzzy (H-NF) method for MCDM in regulating energy for smart homes by combining FL with an MNN. The suggested approach would optimize energy use in smart homes by considering several parameters, notably cost, ease of use, and environmental effects. In addition, this study aims to examine how the H-NF model fares in comparison to other methods of making important decisions in terms of several performance metrics. The suggested hybridized approach has the potential to deliver more precise and effective decision-making processes for energy management in smart homes, allowing users to optimize their energy consumption while preserving comfort and lowering environmental impact.\",\"PeriodicalId\":11205,\"journal\":{\"name\":\"Distributed Generation & Alternative Energy Journal\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Distributed Generation & Alternative Energy Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/dgaej2156-3306.3914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Distributed Generation & Alternative Energy Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/dgaej2156-3306.3914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着节能家庭自动化和其他节能技术的日益普及,智能能源监管解决方案的必要性已经出现。使用多标准决策(MCDM)优化智能家居能源使用是一种经过验证的方法。然而,决策过程和MCDM处理各种标准的能力通常是限制因素。混合方法集成了模糊逻辑(FL)和模块化神经网络(MNN)等多种决策方法,有可能绕过这些限制,提高能源管理系统的效率和精度。本研究提出了一种混合神经模糊(H-NF)方法,通过将FL与MNN相结合,用于MCDM调节智能家居的能量。建议的方法将通过考虑几个参数来优化智能家居的能源使用,特别是成本、易用性和环境影响。此外,本研究旨在研究H-NF模型在几个性能指标方面与其他做出重要决策的方法相比如何。建议的混合方法有可能为智能家居的能源管理提供更精确和有效的决策过程,允许用户在保持舒适和降低环境影响的同时优化他们的能源消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-Criteria Decision-Making for Energy Management in Smart Homes Using Hybridized Neuro-Fuzzy Approach
The necessity for smart energy oversight solutions has arisen in response to the rising popularity of energy-efficient home automation and other energy-saving technologies. Optimizing smart home energy use using multi-criteria decision-making (MCDM) is a proven methodology. However, the procedure for making decisions and MCDM’s capacity to handle various criteria are typically limiting factors. Hybrid methods, which integrate multiple decision-making approaches like Fuzzy Logic (FL) and Modular Neural Networks (MNN), could potentially be able to circumvent these restrictions and boost energy management systems’ efficacy and precision. This investigation presents a hybrid Neuro-Fuzzy (H-NF) method for MCDM in regulating energy for smart homes by combining FL with an MNN. The suggested approach would optimize energy use in smart homes by considering several parameters, notably cost, ease of use, and environmental effects. In addition, this study aims to examine how the H-NF model fares in comparison to other methods of making important decisions in terms of several performance metrics. The suggested hybridized approach has the potential to deliver more precise and effective decision-making processes for energy management in smart homes, allowing users to optimize their energy consumption while preserving comfort and lowering environmental impact.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Power Grid User Behavior Based on Data Mining Algorithms – System Design and Implementation Load Frequency Control Strategy of Interconnected Power System Based on Tube DMPC KWH Cost Analysis of Energy Storage Power Station Based on Changing Trend of Battery Cost Study on PV Power Prediction Based on VMD-IGWO-LSTM Research on Environmental Performance and Measurement of Smart City Power Supply Based on Non Radial Network DEA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1