基于洗牌青蛙跳跃算法的CO2排放约束短期机组承诺问题

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Electrical and Computer Engineering Pub Date : 2023-10-30 DOI:10.1155/2023/2336689
K. Selvakumar, D. Selvabharathi, R. Palanisamy, T. M. Thamizh Thentral
{"title":"基于洗牌青蛙跳跃算法的CO2排放约束短期机组承诺问题","authors":"K. Selvakumar, D. Selvabharathi, R. Palanisamy, T. M. Thamizh Thentral","doi":"10.1155/2023/2336689","DOIUrl":null,"url":null,"abstract":"The increasing concerns about greenhouse gas emissions have made it necessary to incorporate environmental constraints in the operation of power systems. The CO2 emission-constrained short-term unit commitment problem (CSCUCP) is a multiobjective optimization problem that involves minimizing both the cost of operation and the CO2 emissions. This paper proposes an integer-coded shuffled frog-leaping algorithm (SFLA) to minimize both total CO2 emissions and operating costs for the unit commitment problem (UCP) over a one-day scheduling period. The SFLA is inspired by the natural food-searching behavior of frogs. The proposed method aims to determine the optimal start-up and shut-down times for generating units to meet fluctuating loads while minimizing operating costs and CO2 emissions. The method takes into account fuel costs, start-up and shut-down costs, and maintenance costs while satisfying various constraints. The study uses the IEEE 39 bus with a 10-unit test system, and the results are related to conventional methods. The proposed method consistently produces lower CO2 emissions and total operating costs compared to the existing methods.","PeriodicalId":46573,"journal":{"name":"Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO2 Emission-Constrained Short-Term Unit Commitment Problem Using Shuffled Frog Leaping Algorithm\",\"authors\":\"K. Selvakumar, D. Selvabharathi, R. Palanisamy, T. M. Thamizh Thentral\",\"doi\":\"10.1155/2023/2336689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing concerns about greenhouse gas emissions have made it necessary to incorporate environmental constraints in the operation of power systems. The CO2 emission-constrained short-term unit commitment problem (CSCUCP) is a multiobjective optimization problem that involves minimizing both the cost of operation and the CO2 emissions. This paper proposes an integer-coded shuffled frog-leaping algorithm (SFLA) to minimize both total CO2 emissions and operating costs for the unit commitment problem (UCP) over a one-day scheduling period. The SFLA is inspired by the natural food-searching behavior of frogs. The proposed method aims to determine the optimal start-up and shut-down times for generating units to meet fluctuating loads while minimizing operating costs and CO2 emissions. The method takes into account fuel costs, start-up and shut-down costs, and maintenance costs while satisfying various constraints. The study uses the IEEE 39 bus with a 10-unit test system, and the results are related to conventional methods. The proposed method consistently produces lower CO2 emissions and total operating costs compared to the existing methods.\",\"PeriodicalId\":46573,\"journal\":{\"name\":\"Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/2336689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2336689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

对温室气体排放的日益关注使得有必要在电力系统的运行中纳入环境限制。限制CO2排放的短期机组承诺问题(CSCUCP)是一个多目标优化问题,涉及到运行成本和CO2排放的最小化。针对机组承诺问题(UCP),提出了一种整数编码的shuffle frog- leapalgorithm (SFLA),以在一天的调度周期内使总CO2排放量和运行成本最小化。SFLA的灵感来自于青蛙的自然觅食行为。提出的方法旨在确定发电机组的最佳启动和关闭时间,以满足波动负荷,同时最大限度地降低运行成本和二氧化碳排放。该方法在满足各种约束条件的同时,考虑了燃料成本、启停成本和维护成本。本研究采用IEEE 39总线和10单元测试系统,结果与传统方法相关。与现有方法相比,所提出的方法始终产生更低的二氧化碳排放和总运营成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CO2 Emission-Constrained Short-Term Unit Commitment Problem Using Shuffled Frog Leaping Algorithm
The increasing concerns about greenhouse gas emissions have made it necessary to incorporate environmental constraints in the operation of power systems. The CO2 emission-constrained short-term unit commitment problem (CSCUCP) is a multiobjective optimization problem that involves minimizing both the cost of operation and the CO2 emissions. This paper proposes an integer-coded shuffled frog-leaping algorithm (SFLA) to minimize both total CO2 emissions and operating costs for the unit commitment problem (UCP) over a one-day scheduling period. The SFLA is inspired by the natural food-searching behavior of frogs. The proposed method aims to determine the optimal start-up and shut-down times for generating units to meet fluctuating loads while minimizing operating costs and CO2 emissions. The method takes into account fuel costs, start-up and shut-down costs, and maintenance costs while satisfying various constraints. The study uses the IEEE 39 bus with a 10-unit test system, and the results are related to conventional methods. The proposed method consistently produces lower CO2 emissions and total operating costs compared to the existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electrical and Computer Engineering
Journal of Electrical and Computer Engineering COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
4.20
自引率
0.00%
发文量
152
审稿时长
19 weeks
期刊最新文献
Network Intrusion Detection Using Knapsack Optimization, Mutual Information Gain, and Machine Learning Electronically Tunable Grounded and Floating Capacitance Multipliers Using a Single Active Element A Novel Technique for Facial Recognition Based on the GSO-CNN Deep Learning Algorithm Simulation Analysis of Arc-Quenching Performance of Eco-Friendly Insulating Gas Mixture of CF3I and CO2 under Impulse Arc Balancing Data Privacy and 5G VNFs Security Monitoring: Federated Learning with CNN + BiLSTM + LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1