基于机器学习建模技术的点到局域网VHF信号强度计算

Kingsley Igwe, None Nurudeen Olawale Adeyemi, None Lukman Folorunso Onadiran
{"title":"基于机器学习建模技术的点到局域网VHF信号强度计算","authors":"Kingsley Igwe, None Nurudeen Olawale Adeyemi, None Lukman Folorunso Onadiran","doi":"10.56532/mjsat.v3i3.163","DOIUrl":null,"url":null,"abstract":"In this paper, computation of very high frequency (VHF) signal strength for point to area network was carried out using machine learning modeling techniques. Seven different machine learning models were adopted: Decision Tree, Random Forest, AdaBoost, k-Nearest Neighbor, Support Vector Machine, Artificial Neural Network and Linear Regression. A total of 120 data points was used in computing the signal strength. 72 data points (60%) was used to train the model, while the remaining 48 data points (40%) were used as test data to determine the accuracy of the computation for all the models. From the results, it was observed that the accuracy of the computations was greatly influenced by the amount of training data that was used. Also, from the results, in highest order of accuracy, AdaBoost was adjudged the best model. This was followed by the Artificial Neural Network model. Generally, the error margin of computation obtained for these two models were low, hence indicating that the models can be effectively relied on for computation of signal strength in the study area.","PeriodicalId":496585,"journal":{"name":"Malaysian Journal of Science and Advanced Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of VHF Signal Strength for Point to Area Network using Machine Learning Modeling Techniques\",\"authors\":\"Kingsley Igwe, None Nurudeen Olawale Adeyemi, None Lukman Folorunso Onadiran\",\"doi\":\"10.56532/mjsat.v3i3.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, computation of very high frequency (VHF) signal strength for point to area network was carried out using machine learning modeling techniques. Seven different machine learning models were adopted: Decision Tree, Random Forest, AdaBoost, k-Nearest Neighbor, Support Vector Machine, Artificial Neural Network and Linear Regression. A total of 120 data points was used in computing the signal strength. 72 data points (60%) was used to train the model, while the remaining 48 data points (40%) were used as test data to determine the accuracy of the computation for all the models. From the results, it was observed that the accuracy of the computations was greatly influenced by the amount of training data that was used. Also, from the results, in highest order of accuracy, AdaBoost was adjudged the best model. This was followed by the Artificial Neural Network model. Generally, the error margin of computation obtained for these two models were low, hence indicating that the models can be effectively relied on for computation of signal strength in the study area.\",\"PeriodicalId\":496585,\"journal\":{\"name\":\"Malaysian Journal of Science and Advanced Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Malaysian Journal of Science and Advanced Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56532/mjsat.v3i3.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Malaysian Journal of Science and Advanced Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56532/mjsat.v3i3.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用机器学习建模技术对点到局域网的甚高频(VHF)信号强度进行计算。采用决策树、随机森林、AdaBoost、k近邻、支持向量机、人工神经网络和线性回归等7种不同的机器学习模型。共使用120个数据点计算信号强度。72个数据点(60%)用于训练模型,其余48个数据点(40%)作为测试数据,以确定所有模型的计算精度。从结果中可以看出,计算的准确性受到所使用的训练数据量的极大影响。此外,从结果来看,AdaBoost被认为是准确率最高的模型。接下来是人工神经网络模型。总体而言,这两种模型的计算误差较小,表明这两种模型可以有效地用于研究区信号强度的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computation of VHF Signal Strength for Point to Area Network using Machine Learning Modeling Techniques
In this paper, computation of very high frequency (VHF) signal strength for point to area network was carried out using machine learning modeling techniques. Seven different machine learning models were adopted: Decision Tree, Random Forest, AdaBoost, k-Nearest Neighbor, Support Vector Machine, Artificial Neural Network and Linear Regression. A total of 120 data points was used in computing the signal strength. 72 data points (60%) was used to train the model, while the remaining 48 data points (40%) were used as test data to determine the accuracy of the computation for all the models. From the results, it was observed that the accuracy of the computations was greatly influenced by the amount of training data that was used. Also, from the results, in highest order of accuracy, AdaBoost was adjudged the best model. This was followed by the Artificial Neural Network model. Generally, the error margin of computation obtained for these two models were low, hence indicating that the models can be effectively relied on for computation of signal strength in the study area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Over-burnt Bricks on Gradation, Water Absorption and Specific Gravity of Aggregates, Workability and Compressive Strength of Concrete IoT-enabled Smart Weather Stations: Innovations, Challenges, and Future Directions IoT-enabled Greenhouse Systems: Optimizing Plant Growth and Efficiency Improving Fish Quality and Yield: An Automated Monitoring System for Intensive Aquaculture Transformative Applications of IoT in Diverse Industries: A Mini Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1